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Throughout the talk : finite-dimensional real setting.

" is the noise.

A : Rm ! Rn
is a linear measurement/degradation operator.
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Throughout the talk : finite-dimensional real setting.

" is the noise.

A : Rm ! Rn
is a linear measurement/degradation operator.

Objective
Recover x0 from y is an ill-posed inverse problem.
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Solve an inverse problem through regularization :

x

?(y,�) 2 Argmin
x2Rn

F (Ax, y)| {z }
Data fidelity

+� R(x)| {z }
Regularization, constraints

R promotes objects living in the same manifold as x0. 4
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Many applications in data sciences: signal/image processing, 
machine learning, statistics, etc..

y 2 Rm
x0 2 Rn

Regularization

+ x0 typically lives

in a low-dimensional subset of Rn

F (·, y) and R 2 �0(Rn)
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Low-complexity regularization
F (·, y) and R 2 �0(Rn)min

x2Rn
F (Ax, y) + �R(x)

Low-complexity of x0 () Low-dimensional subset M

x0
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Low-complexity regularization

Sparse vectors

(tightest convex relaxation of `0)

Low-rank matrices

(tightest convex relaxation of rank)

R2 R3

Sym2(R)

R(x) = kxk1 R(x) = kxk⇤

F (·, y) and R 2 �0(Rn)min
x2Rn

F (Ax, y) + �R(x)

Low-complexity of x0 () Low-dimensional subset M

x0
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Low-complexity regularization
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Regularization guarantees
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?(y,�) 2 Argmin
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F (Ax, y) + �R(x)

Which conditions to ensure :

Exact recovery in the noiseless case : x?(0+,Ax0) = x0.

Stable recovery : '(x?(y,�), x0) = O(k"k).
x?(y,�) 2 M

x0 and/or M
x

?(y,�) ✓ M
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Which conditions to ensure :

Exact recovery in the noiseless case : x?(0+,Ax0) = x0.

Stable recovery : '(x?(y,�), x0) = O(k"k).
x?(y,�) 2 M

x0 and/or M
x

?(y,�) ✓ M
x0 .

x

k

2 M

x

?(y,�) and/or M

xk ✓ M

x

?(y,�).

Algorithmic implications :

Run an algorithm A and generate iterates xk ! x

?(y,�).

Which conditions guarantee finite activity identification
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Notations

8

@R : subdifferential of R.

N

C

: normal cone of C.

A↵(C) : affine hull of C.

par(C) : subspace parallel to C.

ri(C) : relative interior of C.

S

x

= par(@R(x)), T
x

= S

?
x

.
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Known results: stable recovery
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Known results: stable recovery
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?(y,�) 2 Argmin
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1

2
ky �Axk2 + �R(x)

x0

T
x0

ker(A)

Im
(A

⇤ )

Theorem Assume that

Im(A⇤) \ ri (@R(x0)) and ker(A) \ T
x0 = {0}.

Then, choosing � = c k"k, c > 0, any minimizer x?(y,�) obeys

kx?(y,�)� x0k = kx?(y0 + ",�)� x?

y0,0+
k = O(k"k) .

T

x0 = par(@R(x0))
?

Non-degeneracy condition
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Known results: stable model recovery

10

y = Ax0 + "

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)

T

x0 = par(@R(x0))
?

e
x0 = PA↵(@R(x0))(0)

Minimal `2-norm certificate q0 = A+,⇤
T

x0
e
x0 .



MOA-MIA’17-
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?

e
x0 = PA↵(@R(x0))(0)

x0

T
x0

ker(A)

Im
(A
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u0

Theorem Let M

x0 be the ”model” subset of x0. Assume that R has a nice structure

on a nice subset M

x0 nearby x0, and that

u0 = A⇤
q0 2 ri (@R(x0)) and ker(A) \ T

x0 = {0}.

Then 9C0, C1 > 0 depending only on x0 such that for all (",�) s.t. C0 k"k  �  C1,

the solution x

?(�, y) is unique and satisfies x

?(y,�) 2 M

x0 .

Non-degeneracy condition

Minimal `2-norm certificate q0 = A+,⇤
T

x0
e
x0 .
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Known results: finite activity identification
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Theorem Let the FB be used to create a sequence x
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Known results: finite activity identification
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x
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for k large enough.

If R has a nice structure on a nice subset M

x0 nearby x0, and

u0 = A⇤
q0 2 ri (@R(x0)) and ker(A) \ T

x0 = {0}.

Then 9C0, C1 > 0 depending only on x0 such that for all (",�) s.t. C0 k"k  �  C1,

x

k

2 M

x0 for k large enough.

Non-degeneracy condition
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h
✏, 2/

������A
������2 � ✏
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(i) If m > 2s log(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(ii) If m > 2ts log(n) + s, t > 1, then q0 is a non-degenerate dual certificate.
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Regularization guarantees: summary
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Non-degeneracy is ubiquitous.
Structure of the regularizer is important.
Does non-degeneracy hold in practical problems:

Yes in e.g. compressed sensing (CS):

Mostly unlikely for challenging inverse problems (e.g. 
deconvolution).

What about these intricate situations ?
What about even CS with insufficient number of measurements ?
Can we say anything at all under degeneracy ?

Proposition R = k·k1, Ai,j ⇠iid N (0, 1), and s = kx0k0.

(i) If m > 2s log(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(ii) If m > 2ts log(n) + s, t > 1, then q0 is a non-degenerate dual certificate.
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Regularization guarantees: recap

13

Known results:
Assume non-degeneracy and some structure.
Exact model recovery.

Our results in this talk:
Degeneracy and some structure.
Some model recovery: model localization.

The answer is YES if we have some structure



MOA-MIA’17-

Outline
Mirror-stratifiable functions.
Sensitivity analysis.
Regularized inverse problems.
Algorithmic implications.
Numerical results.
Conclusion.

14



MOA-MIA’17-

Outline
Mirror-stratifiable functions.
Sensitivity analysis.
Regularized inverse problems.
Algorithmic implications.
Numerical results.
Conclusion.

15



MOA-MIA’17-

Stratification

16

Definition A stratification of a set D ⇢ Rn
is a finite disjoint partition M = {Mi}i2I

such that the partitioning sets (strata) fit nicely, i.e. 8(M,M 0) 2 M2
we have

M \ cl(M 0) 6= ; =) M ⇢ cl(M 0).
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Definition A stratification of a set D ⇢ Rn
is a finite disjoint partition M = {Mi}i2I

such that the partitioning sets (strata) fit nicely, i.e. 8(M,M 0) 2 M2
we have

M \ cl(M 0) 6= ; =) M ⇢ cl(M 0).

B1

M1M2

M4 M3

M1  M2  M4 M1  M3  M4

A stratification is naturally endowed with the partial ordering  :

M  M 0 () M ⇢ cl(M 0) () M \ cl(M 0) 6= ;.
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Mirror-stratifiable functions

17

Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) R : Rn !
R [ {+1} is a proper lsc convex function. The associated correspondence operator

J
R

: Rn ◆ Rn

is

J
R

(S)
def

=
[

x2S

ri(@R(x)),
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Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) R : Rn !
R [ {+1} is a proper lsc convex function. The associated correspondence operator

J
R

: Rn ◆ Rn

is

J
R

(S)
def

=
[

x2S

ri(@R(x)),

JR is increasing for the inclusion.

To be interesting for sensitivity analysis, it should be decreasing for the partial

ordering .

This is captured in mirror stratification.
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R [ {+1} is a proper lsc convex function. The associated correspondence operator

J
R

: Rn ◆ Rn

is

J
R

(S)
def

=
[

x2S

ri(@R(x)),

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stra-

tification M = {Mi}i2I of dom(@R) and a dual stratification M⇤
= {M⇤

i }i2I of

dom(@R⇤
) if :

(i) Conjugation induces a duality pairing between M and M⇤
, and JR : M ! M⇤

is invertible with J�1
R = JR⇤

.

(ii) JR is decreasing for the relation  : for any (M,M 0
) 2 M2

M  M 0 () JR(M) � JR(M
0
).
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Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) R : Rn !
R [ {+1} is a proper lsc convex function. The associated correspondence operator

J
R

: Rn ◆ Rn

is

J
R

(S)
def

=
[

x2S

ri(@R(x)),

Remark The theory can be generalized to set-valued maximal monotone mappings

just as well.

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stra-

tification M = {Mi}i2I of dom(@R) and a dual stratification M⇤
= {M⇤

i }i2I of

dom(@R⇤
) if :

(i) Conjugation induces a duality pairing between M and M⇤
, and JR : M ! M⇤

is invertible with J�1
R = JR⇤

.

(ii) JR is decreasing for the relation  : for any (M,M 0
) 2 M2

M  M 0 () JR(M) � JR(M
0
).
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R = k·k1
dom(@R) = Rn

R⇤ = ◆kvk11
dom(NB1) = B1

Jk·k1
(M

i

) =
S

x2Mi
ri(@ kxk1) = M

⇤
i

JR

JR⇤ = J�1
R

M⇤
1M⇤

2

M⇤
3M⇤

4

M1

M2

M4
M3

M⇤ = {{�1}, ]� 1, 1[, {1}}nM = {]�1, 0[, {0}, ]0,+1[}n
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Example (`1,2 norm) R(x) = kxkB =
P

B2B kxBk2, is mirror-stratifiable with res-

pect to M = {{0},R|B| \ {0}}K and M⇤ = {S|B|�1
, int(B

`|B|
2

)}K .

M⇤
1M⇤

2

M⇤
3M⇤

4
M1

M2

M3

M4

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.
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Example (`1,2 norm) R(x) = kxkB =
P

B2B kxBk2, is mirror-stratifiable with res-

pect to M = {{0},R|B| \ {0}}K and M⇤ = {S|B|�1
, int(B

`|B|
2

)}K .

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

Example (Nuclear norm) R(x) = kxk⇤ =
Pr

i=1 �i(x), x 2 Rn1⇥n2
is mirror-

stratifiable with respect to

Mi =
�
X 2 Rn⇥n : rang(X) = i

 

M

⇤
i = {U 2 Rn : �1(U) = · · · = �i(U) = 1, 8j > i, |�j(U)| < 1} .
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Proposition (Separability) If Rl : Rnl ! R [ {+1} is mirror-stratifiable, l =

, · · · , L, w.r.t. Ml and M⇤
l , then

PL
l=1 Rl(xl) is mirror-stratifiable w.r.t. M1 ⇥ · · · ⇥

ML and M⇤
1 ⇥ · · ·⇥M⇤

L.
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l , then

PL
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1 ⇥ · · ·⇥M⇤
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Proposition (Spectral Lifting of Polyhedral Functions) Let Rsym
be a convex po-

lyhedral and (signed) permutation-invariant function. Then the spectrally lifted function

R = Rsym � � is mirror-stratifiable w.r.t. the smooth stratification {��1(M sym)} and

its image by JR.
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Proposition (Separability) If Rl : Rnl ! R [ {+1} is mirror-stratifiable, l =

, · · · , L, w.r.t. Ml and M⇤
l , then

PL
l=1 Rl(xl) is mirror-stratifiable w.r.t. M1 ⇥ · · · ⇥

ML and M⇤
1 ⇥ · · ·⇥M⇤

L.

Proposition (Spectral Lifting of Polyhedral Functions) Let Rsym
be a convex po-

lyhedral and (signed) permutation-invariant function. Then the spectrally lifted function

R = Rsym � � is mirror-stratifiable w.r.t. the smooth stratification {��1(M sym)} and

its image by JR.

Remark (Instability under the sum) The family of mirror-stratifiable functions is not

stable under the sum :

Consider the pair R(x) = |x|+ x

2
/2 and R

⇤
(u) = (max{|u|� 1, 0})2/2.

JR(R) = R\{�1, 1})JR cannot be a pairing between any two stratifications

of R.

The reason : convex conjugacy is a duality between strict/strong convexity and

smoothness.
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Ubiquity of mirror-stratification

21

Assumptions seem strong, but virtually all regularizers routinely 
used in signal/image processing, machine learning, statistics are 
mirror stratifiable.  
Strata are generally not necessarily manifolds.
Polyhedral, semialgebraic, tame functions, where stratifications are 
manifolds.
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Parametric composite problems

23

Parametric convex composite (smooth+nonsmooth) optimization problem :

x

?(p) 2 Argmin
x2Rn

E(x, p)
def

= F (x, p) +R(x),

p 2 ⇧, ⇧ an open subset of a finite dimensional linear space.

F (·, p) is convex and smooth.

R is proper lsc and convex.

Sensitivity analysis is about the properties of x

?(p) to perturbations of p 2 ⇧

around some reference point p0.

Existing sensitivity results require non-degeneracy :

�rF (x?(p0), p0) 2 ri(@R(x?(p0)).
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Theorem Assume that :

(i) Well-posedness : E(·, p0) has a unique minimizer x

?(p0) ;

(ii) Continuity : E is lsc on Rn ⇥ ⇧, E(x?(p0), ·) is continuous at p0, and rF is

continuous at (x?(p0), p0) ;

(iii) Compactness : E is level-bounded in x uniformly in p locally around p0.

If R is mirror-stratifiable w.r.t. (M,M⇤), then 8p ⇠ p0, any minimizer x

?(p) obeys

M

x

?(p0)  M

x

?(p)  J
R

⇤(M⇤
u

?(p0)
)

Sensitivity result

24

u

?(p0)
def
= �rF (x?(p0), p0).

x

?(p) 2 Argmin
x2Rn

E(x, p)
def
= F (x, p) +R(x),
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u

?(p0)
def
= �rF (x?(p0), p0).

If R has a nice structure (partial smoothness) around x

?(p0) and

u

?(p0) 2 ri(@R(x?(p0)),

then 8p ⇠ p0 [Lewis 2006]

M

x

?(p) = M

x

?(p0) = J
R

⇤(M⇤
u

?(p0)
).

x

?(p) 2 Argmin
x2Rn

E(x, p)
def
= F (x, p) +R(x),
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?(p) = p� x
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p

M1
M⇤

1

M
x

?(p) = M
x

?(p0) = M1 = Jk·k1
(M⇤

1 ).

u?(p)
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M2 x
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p

M⇤
2

M
x

?(p0) = M1  M
x

?(p)  Jk·k1
(M

u

?(p0)) = M2.
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Back to inverse problems
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y = Ax0 + "

x

?(y, 0) 2 Argmin
x2Rn

R(x) s.t. y = Ax

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)(P(y,�))

(P(y, 0))

Sensitivity analysis is about the properties of x

?(p), to perturbations of p =

(y,�) around p0 = (y0, 0).

Previous sensitivity result for parametric composite problems does not apply :

E(x, p) may not even be continuous at p0.
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y = Ax0 + "

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)

T

x0 = par(@R(x0))
?

e
x0 = PA↵(@R(x0))(0)

Minimal `2-norm certificate q0 = A+,⇤
T

x0
e
x0 .

(P(y,�))
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y = Ax0 + "

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)

T

x0 = par(@R(x0))
?

e
x0 = PA↵(@R(x0))(0)

Minimal `2-norm certificate q0 = A+,⇤
T

x0
e
x0 .

(P(y,�))

Non-degeneracy condition

Theorem Let M

x0 be the ”model” subset of x0. Assume that R has a nice structure

on a nice subset M

x0 nearby x0, and that

u0 = A⇤
q0 2 ri (@R(x0)) and ker(A) \ T

x0 = {0}.

Then 9C0, C1 > 0 depending only on x0 such that for all (",�) s.t. C0 k"k  �  C1,

(P(y0, 0)) has a unique solution x

?(y,�) and satisfies

M

x

?(y,�) = M

x0 .
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Enlarged model recovery
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y = Ax0 + "

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)(P(y,�))

q0(0, y) = argmin
q2Rm

kqk s.t. A⇤
q 2 @R(x?(0, y)).

Theorem Suppose that x0 is the unique solution to (P(y0, 0)). Assume that R is

mirror-stratifiable w.r.t. (M,M⇤). Then 9C0, C1 > 0 depending only on x0 such that

for all (",�) s.t. C0 k"k  �  C1, there exists a minimizer x

?(y,�) of (P(y,�))

localized as

M

x0  M

x

?(p)  J
R

⇤(M⇤
u0
) u0

def
= A⇤q0(0, y0).
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FB splitting: class of problems
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min
x2Rn

F (x) +R(x)

(A.1) F and R 2 �0(Rn), F 2 C1,1(Rn) with 1/�–Lipschitz gradient.

(A.2) Non-empty set of minimizers.
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min
x2Rn

F (x) +R(x)

(A.1) F and R 2 �0(Rn), F 2 C1,1(Rn) with 1/�–Lipschitz gradient.

(A.2) Non-empty set of minimizers.

�k 2 [✏, 2� � ✏] xk+1 = prox�kR (xk � �krF (xk))
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Exact FB activity identification

33

min
x2Rn

F (x) +R(x)

�k 2 [✏, 2� � ✏] xk+1 = prox�kR (xk � �krF (xk))

Theorem Let the FB be used to create a sequence x

k

which converges to x

?

. As-

sume that R has a nice structure on a nice subset M

x

?
nearby x

?

, and

u

?

def

= �rF (x?) 2 ri (@R(x?)) .

Then for k large enough

M

xk = M

x

?
.
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min
x2Rn

F (x) +R(x)

�k 2 [✏, 2� � ✏] xk+1 = prox�kR (xk � �krF (xk))

Theorem Let the FB be used to create a sequence x

k

which converges to x

?

. As-

sume that R has a nice structure on a nice subset M

x

?
nearby x

?

, and

u

?

def

= �rF (x?) 2 ri (@R(x?)) .

Then for k large enough

M

xk = M

x

?
.
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Enlarged FB activity identification
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min
x2Rn

F (x) +R(x)

�k 2 [✏, 2� � ✏] xk+1 = prox�kR (xk � �krF (xk))

Theorem Let the FB be used to create a sequence x

k

which converges to x

?

. As-

sume that R is mirror-stratifiable w.r.t. (M,M⇤). Then for k large enough,

M

x

?  M

xk  J
R

⇤(M⇤
u

?)
u

? def
= �rF (x?).
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PD splitting: class of problems

35

(J _+ G)(·) def
= infv2Rm J(·) +G(·� v)

Primal problemmin
x2Rn

R(x) + F (x) + (J _+ G)(Lx)
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@J⇤@G
def
=

�
@J�1 + @G�1

��1
.

(A.1) R,F 2 �0 (Rn), and rF 2 (1/�F )–Lip(Rn).

(A.2) J,G 2 �0 (Rm), and G is �G -strongly convex.

(A.3) L : Rn ! Rm
is a linear mapping.

(A.4) 0 2 ran (@R+rF + L⇤(@J⇤@G)L).

(J _+ G)(·) def
= infv2Rm J(·) +G(·� v)

Primal problemmin
x2Rn

R(x) + F (x) + (J _+ G)(Lx)
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Dual problem
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v2Rm
�J⇤

(v)�G⇤
(v)� (R⇤ _+ F ⇤

)(�L⇤v)

(J _+ G)(·) def
= infv2Rm J(·) +G(·� v)

Primal problemmin
x2Rn

R(x) + F (x) + (J _+ G)(Lx)
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max

v2Rm
�J⇤

(v)�G⇤
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)(�L⇤v)

(J _+ G)(·) def
= infv2Rm J(·) +G(·� v)

Primal problemmin
x2Rn

R(x) + F (x) + (J _+ G)(Lx)

Classical Kuhn-Tucker theory : a pair (x?
, v

?) 2 Rn ⇥ Rm
solves both problems if

0 2
"
@R L

⇤

�L @J

⇤

# 
x

?

v

?

!
+

"
rF 0

0 rG

⇤

# 
x

?

v

?

!
,
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Primal-dual splitting

36

Algorithm 1 A Primal–Dual splitting method

Initial : Choose �R , �J > 0 and ✓ 2 [�1,+1[. For k = 0, x0 2 Rn
, v0 2 Rm

repeat

666664

xk+1 = prox�
R
R (xk � �RrF (xk)� �RL

⇤
vk) ,

x̄k+1 = xk+1 + ✓(xk+1 � xk),

vk+1 = prox�
J
J⇤ (vk � �JrG

⇤
(vk) + �JLx̄k+1) ,

k = k + 1

until convergence;

(primal GD)

(Extrapolation)

(dual GA)

Can be view as forward-backward splitting after renorming [Vu 
2011].
Covers many existing algorithms.
Other schemes are possible: [Briceños-Arias and Combettes, 
Combettes et al. 2012].
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Enlarged PD activity identification
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M  M0 () M ⇢ cl(M0)

Theorem Consider the PD Algorithm 1 with ✓ = 1 and �R , �J such that

2min (�F ,�G) min
⇣

1
�

J
,

1
�

R

⌘✓
1�

q
�J�R kLk2

◆
> 1.

Then (x
k

, v

k

) ! (x?

, v

?), a Kuhn-Tucker pair. If moreover R (resp. J

⇤
) is mirror-

stratifiable wrt primal and dual stratifications

�
(MR

i

,M

R

⇤

i

)
 
i

(resp.

�
(MJ

⇤

i

,M

J

i

)
 
i

),

then for all k large enough, we have

M

R

x

?  M

R

xk
 J

R

⇤

⇣
M

R

⇤

�Lv

?�rF (x?)

⌘
,

M

J

⇤

v

?  M

J

⇤

vk
 J

J

⇣
M

J

Lx

?�rG

⇤(v?)

⌘
.

(J _+ G)(·) def
= infv2Rm J(·) +G(·� v)

min
x2Rn

R(x) + F (x) + (J _+ G)(Lx)
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CS scenario
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1000 realizations at random of (x0,A, ") : A Gaussian ensemble, x0 2 {0, 1}n.

R = k·k1 : (n,m) = (100, 50), kx0k0 2 {1, · · · , 30}.

R = k·k⇤ : (20⇥ 20, 300) = (100, 50), rank(x0) 2 {1, · · · , 9}.

Complexity of x0 too large for CS theory to apply.

Solve :

x

?(y,�) 2 Argmin
x2Rn

1

2
ky �Axk2 + �R(x)

u0 = A⇤argmin
q2Rm

kqk s.t. A⇤
q 2 @R(x0).
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Stable exact model recovery ?
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No exact recovery in general

blue : exact recovery �! red : enlarged recovery

`1-norm kx0k0 = 10 Nuclear norm rank(x0) = 4

H
is

to
gr

am
of

�

� = kx?(y,�)k0 � kx0k0

H
is

to
gr

am
of

�

� = rank(x?(y,�))� rank(x0)

� �
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Enlarged model recovery
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0
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0.4

0.6
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1
δ=0

δ=5
δ=9

� = 9

� = 5

� = 0

`1-norm

Nuclear norm

kx0k0 rank(x0)

Proportion of x0 such that it is is the unique solution of (P(y0, 0))) and �(x0)  �.

�(x0) = dim(J
R

⇤(M⇤
u0
))� dim(M

x0)

The intermediate curves: typical tradeoff between complexity of input vectors 
and stable model stratum recovery in presence of even small noise.

blue : stable exact recovery �! red : unstable enlarged recovery
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Finite enlarged activity identification
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`1-norm kx0k0 = 10 Nuclear norm rank(x0) = 4

k

kx
k
k 0

k
ra
n
k(
x

k
)

Blue : trajectory for each realization x0 such that �(x0) = 0 ) finite identification of M

x0 .

Red : trajectory for each realization x0 such that �(x0) > 0 ) finite identification of

M

x0  M  J
R

⇤(M⇤
u0
).
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Take away messages
A unified analysis of model recovery under degeneracy.
Mirror-stratification is a key:

Enlarged model recovery for inverse problems.
Enlarged activity identification for proximal splitting 
algorithms.

Can be generalized to maximal monotone operators.
Why the largest stratum seems to be identified ?
Beyond convexity.
Infinite dimension.
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