Sensitivity Analysis With Degeneracy: Mirror Stratifiable Functions

Jalal Fadili

Normandie Université-ENSICAEN, GREYC CNRS UMR 6072

Joint work with Jérôme Malick and Gabriel Peyré

Journées GdR MOA-MIA Bordeaux 2017

Linear inverse problems

- Throughout the talk : finite-dimensional real setting.
- \bullet ε is the noise.
- $A: \mathbb{R}^m \to \mathbb{R}^n$ is a linear measurement/degradation operator.

Linear inverse problems

- Throughout the talk : finite-dimensional real setting.
- \bullet is the noise.
- $A: \mathbb{R}^m \to \mathbb{R}^n$ is a linear measurement/degradation operator.

Objective

Recover x_0 from y is an ill-posed inverse problem.

MOA-MIA'17-2

Regularization

x_0 typically lives in a low-dimensional subset of \mathbb{R}^n

Regularization

- Many applications in data sciences: signal/image processing, machine learning, statistics, etc..
- Solve an inverse problem through regularization :

$$x^{\star}(y,\lambda) \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \underbrace{F(Ax,y)}_{\text{Data fidelity}} + \lambda \underbrace{R(x)}_{\text{Regularization, constraints}}$$

MOA-MIA'17-4

- R promotes objects living in the same manifold as x_0 .

$\min_{x \in \mathbb{R}^n} F(\mathbf{A}x, y) + \lambda R(x) \qquad F(\cdot, y) \text{ and } R \in \Gamma_0(\mathbb{R}^n)$

Low-complexity of $x_0 \iff$ Low-dimensional subset M_{x_0}

 $\min_{x \in \mathbb{R}^n} F(\mathbf{A}x, y) + \lambda R(x) \qquad F(\cdot, y) \text{ and } R \in \Gamma_0(\mathbb{R}^n)$

Low-complexity of $x_0 \iff$ Low-dimensional subset M_{x_0}

Sparse vectors

 $\min_{x \in \mathbb{R}^n} F(\mathbf{A}x, y) + \lambda R(x) \qquad F(\cdot, y) \text{ and } R \in \Gamma_0(\mathbb{R}^n)$

Low-complexity of $x_0 \iff$ Low-dimensional subset M_{x_0}

Sparse vectors

 $R(x) = \|x\|_1$ (tightest convex relaxation of ℓ_0)

 $\min_{x \in \mathbb{R}^n} F(\mathbf{A}x, y) + \lambda R(x) \qquad F(\cdot, y) \text{ and } R \in \Gamma_0(\mathbb{R}^n)$

Low-complexity of $x_0 \iff$ Low-dimensional subset M_{x_0}

Sparse vectors

 $R(x) = \|x\|_1$ (tightest convex relaxation of ℓ_0)

Low-rank matrices

MOA-MIA'17-

 $\min_{x \in \mathbb{R}^n} F(\mathbf{A}x, y) + \lambda R(x) \qquad F(\cdot, y) \text{ and } R \in \Gamma_0(\mathbb{R}^n)$

Low-complexity of $x_0 \iff$ Low-dimensional subset M_{x_0}

Sparse vectors

 $R(x) = \|x\|_1$ (tightest convex relaxation of ℓ_0)

Low-rank matrices

MOA-MIA'17-

Analysis sparsity

Regularization guarantees

 $y = Ax_0 + \varepsilon$ $x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} F(Ax, y) + \lambda R(x)$

MOA-MIA'17-7

Regularization guarantees

$$y = Ax_0 + \varepsilon$$
$$x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} F(Ax, y) + \lambda R(x)$$

- Which conditions to ensure :
 - S Exact recovery in the noiseless case : $x^*(0^+, Ax_0) = x_0$.
 - Stable recovery : $\varphi(x^{\star}(y,\lambda),x_0) = O(\|\varepsilon\|).$
 - $\ \, {} \ \, {} \ \, x^{\star}(y,\lambda) \in M_{x_0} \text{ and/or } M_{x^{\star}(y,\lambda)} \subseteq M_{x_0}.$

Regularization guarantees

$$y = Ax_0 + \varepsilon$$
$$x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} F(Ax, y) + \lambda R(x)$$

- Which conditions to ensure :
 - Solution Exact recovery in the noiseless case : $x^{\star}(0^+, Ax_0) = x_0$.
 - Stable recovery : $\varphi(x^{\star}(y,\lambda),x_0) = O(\|\varepsilon\|).$
 - $\ \, {} \ \, {} \ \, x^{\star}(y,\lambda) \in M_{x_0} \text{ and/or } M_{x^{\star}(y,\lambda)} \subseteq M_{x_0}.$
- Algorithmic implications :
 - Solution Run an algorithm \mathcal{A} and generate iterates $x_k \to x^*(y, \lambda)$.
 - Which conditions guarantee finite activity identification

$$x_k \in M_{x^*(y,\lambda)}$$
 and/or $M_{x_k} \subseteq M_{x^*(y,\lambda)}$.

Notations

 $\partial R :$ subdifferential of R. \square N_C : normal cone of C. \square par(C) : subspace parallel to C. ri(C): relative interior of C. $S_x = \operatorname{par}(\partial R(x)), T_x = S_x^{\perp}.$

Known results: stable recovery

$$y = Ax_0 + \varepsilon$$
$$x^{\star}(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

Known results: stable recovery

$$y = Ax_0 + \varepsilon$$
$$x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

Theorem Assume that

Non-degeneracy condition

 $T_{x_0} = \operatorname{par}(\partial R(x_0))^{\perp}$ $\operatorname{Im}(A^*) \cap \operatorname{ri}(\partial R(x_0))$ and $\operatorname{ker}(A) \cap T_{x_0} = \{0\}.$

Then, choosing $\lambda = c \|\varepsilon\|$, c > 0, any minimizer $x^{\star}(y, \lambda)$ obeys

 $\|x^{*}(y,\lambda) - x_{0}\| = \|x^{*}(y_{0} + \varepsilon, \lambda) - x^{*}_{y_{0},0^{+}}\| = O(\|\varepsilon\|).$

MOA-MIA'17-9

Known results: stable model recovery

$$y = Ax_0 + \varepsilon$$

$$x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

$$\operatorname{Minimal}_{\ell_2}\operatorname{-norm} \operatorname{certificate}_{q_0} = A^{+,*}_{T_{x_0}} e_{x_0}.$$

$$T_{x_0} = \operatorname{par}(\partial R(x_0))^{\perp}$$

$$e_{x_0} = \operatorname{P}_{\operatorname{Aff}(\partial R(x_0))}(0)$$

Known results: stable model recovery

$$y = Ax_0 + \varepsilon$$

$$x^*(y,\lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

$$\operatorname{Minimal}_{\ell_2}\operatorname{-norm} \operatorname{certificate}_{q_0} = A^{+,*}_{T_{x_0}} e_{x_0}, \qquad \begin{array}{c} T_{x_0} = \operatorname{par}(\partial R(x_0))^{\perp} \\ e_{x_0} = \operatorname{P}_{\operatorname{Aff}(\partial R(x_0))}(0) \end{array}$$

Theorem Let M_{x_0} be the "model" subset of x_0 . Assume that R has a nice structure on a nice subset M_{x_0} nearby x_0 , and that

Non-degeneracy condition $u_0 = A^* q_0 \in \operatorname{ri}(\partial R(x_0))$ and $\ker(A) \cap T_{x_0} = \{0\}.$

Then $\exists C_0, C_1 > 0$ depending only on x_0 such that for all (ε, λ) s.t. $C_0 ||\varepsilon|| \le \lambda \le C_1$, the solution $x^*(\lambda, y)$ is unique and satisfies $x^*(y, \lambda) \in M_{x_0}$.

Known results: finite activity identification

$$\min_{x \in \mathbb{R}^{n}} \frac{1}{2} \|y - Ax\|^{2} + \lambda R(x)$$

$$y_{k} \in \left[\epsilon, 2/\|A\|^{2} - \epsilon\right] \quad x_{k+1} = \operatorname{prox}_{\lambda \gamma_{k} R} \left(x_{k} + \gamma_{k} A^{*}(y - Ax_{k})\right)$$

Known results: finite activity identification

$$\min_{x \in \mathbb{R}^{n}} \frac{1}{2} \|y - Ax\|^{2} + \lambda R(x)$$

$$\gamma_{k} \in \left[\epsilon, 2/\|\|A\|\|^{2} - \epsilon\right] \quad x_{k+1} = \operatorname{prox}_{\lambda \gamma_{k} R} \left(x_{k} + \gamma_{k} A^{*}(y - Ax_{k})\right)$$

-1

Theorem Let the FB be used to create a sequence x_k which converges to x^* . Assume that R has a nice structure on a nice subset M_{x^*} nearby x^* , and Non-degeneracy condition $A^*(y - Ax^*) \in \lambda \text{ri} (\partial R(x^*))$.

Then $x_k \in M_{x^\star}$ for k large enough.

Known results: finite activity identification

$$\min_{x \in \mathbb{R}^{n}} \frac{1}{2} \|y - Ax\|^{2} + \lambda R(x)$$

$$\gamma_{k} \in \left[\epsilon, 2/\|A\|^{2} - \epsilon\right] \quad x_{k+1} = \operatorname{prox}_{\lambda \gamma_{k} R} \left(x_{k} + \gamma_{k} A^{*}(y - Ax_{k})\right)$$

Theorem Let the FB be used to create a sequence x_k which converges to x^* . Assume that R has a nice structure on a nice subset M_{x^*} nearby x^* , and Non-degeneracy condition $A^*(y - Ax^*) \in \lambda \text{ri} (\partial R(x^*))$.

Then $x_k \in M_{x^*}$ for k large enough. If R has a nice structure on a nice subset M_{x_0} nearby x_0 , and Non-degeneracy condition $u_0 = A^* q_0 \in \operatorname{ri}(\partial R(x_0))$ and $\ker(A) \cap T_{x_0} = \{0\}$.

Then $\exists C_0, C_1 > 0$ depending only on x_0 such that for all (ε, λ) s.t. $C_0 ||\varepsilon|| \le \lambda \le C_1$, $x_k \in M_{x_0}$ for k large enough.

Non-degeneracy is ubiquitous.

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

Proposition $R = \|\cdot\|_1$, $A_{i,j} \sim_{iid} \mathcal{N}(0,1)$, and $s = \|x_0\|_0$.

(i) If $m > 2s \log(n/s) + 7/5s$, then there exists a non-degenerate dual certificate.

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

Proposition $R = \|\cdot\|_1$, $A_{i,j} \sim_{iid} \mathcal{N}(0,1)$, and $s = \|x_0\|_0$.

(i) If $m > 2s \log(n/s) + 7/5s$, then there exists a non-degenerate dual certificate.

(ii) If $m > 2ts \log(n) + s$, t > 1, then q_0 is a non-degenerate dual certificate.

Mostly unlikely for challenging inverse problems (e.g. deconvolution).

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

Proposition $R = \|\cdot\|_1$, $A_{i,j} \sim_{iid} \mathcal{N}(0,1)$, and $s = \|x_0\|_0$.

(i) If $m > 2s \log(n/s) + 7/5s$, then there exists a non-degenerate dual certificate.

- Mostly unlikely for challenging inverse problems (e.g. deconvolution).
- What about these intricate situations ?

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

Proposition $R = \|\cdot\|_1$, $A_{i,j} \sim_{iid} \mathcal{N}(0,1)$, and $s = \|x_0\|_0$.

(i) If $m > 2s \log(n/s) + 7/5s$, then there exists a non-degenerate dual certificate.

- Mostly unlikely for challenging inverse problems (e.g. deconvolution).
- What about these intricate situations ?
- What about even CS with insufficient number of measurements ?

- Non-degeneracy is ubiquitous.
- Structure of the regularizer is important.
- Does non-degeneracy hold in practical problems:
 - Yes in e.g. compressed sensing (CS):

Proposition $R = \|\cdot\|_1$, $A_{i,j} \sim_{iid} \mathcal{N}(0,1)$, and $s = \|x_0\|_0$.

(i) If $m > 2s \log(n/s) + 7/5s$, then there exists a non-degenerate dual certificate.

- Mostly unlikely for challenging inverse problems (e.g. deconvolution).
- What about these intricate situations ?
- What about even CS with insufficient number of measurements ?
- Can we say anything at all under degeneracy?

Regularization guarantees: recap

The answer is YES if we have some structure

Regularization guarantees: recap

The answer is YES if we have some structure

- Known results:
 - Assume non-degeneracy and some structure.
 - Exact model recovery.

Regularization guarantees: recap

The answer is YES if we have some structure

- Known results:
 - Assume non-degeneracy and some structure.
 - Exact model recovery.
- Our results in this talk:
 - Degeneracy and some structure.
 - Some model recovery: model localization.

Outline

- Mirror-stratifiable functions.
- Sensitivity analysis.
- Regularized inverse problems.
- Algorithmic implications.
- Numerical results.
- Conclusion.
Outline

- Sensitivity analysis.
- Segularized inverse problems.
- Algorithmic implications.
- Numerical results.
- Conclusion.

Stratification

Definition A stratification of a set $D \subset \mathbb{R}^n$ is a finite disjoint partition $\mathcal{M} = \{M_i\}_{i \in I}$ such that the partitioning sets (strata) fit nicely, i.e. $\forall (M, M') \in \mathcal{M}^2$ we have

 $M \cap \operatorname{cl}(M') \neq \emptyset \implies M \subset \operatorname{cl}(M').$

Stratification

Definition A stratification of a set $D \subset \mathbb{R}^n$ is a finite disjoint partition $\mathcal{M} = \{M_i\}_{i \in I}$ such that the partitioning sets (strata) fit nicely, i.e. $\forall (M, M') \in \mathcal{M}^2$ we have

Stratification

Definition A stratification of a set $D \subset \mathbb{R}^n$ is a finite disjoint partition $\mathcal{M} = \{M_i\}_{i \in I}$ such that the partitioning sets (strata) fit nicely, i.e. $\forall (M, M') \in \mathcal{M}^2$ we have

A stratification is naturally endowed with the partial ordering \leq :

MOA-MIA'17-16

Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) $R: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lsc convex function. The associated correspondence operator $\mathcal{J}_R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is

$$\mathcal{J}_R(S) \stackrel{\text{\tiny def}}{=} \bigcup_{x \in S} \operatorname{ri}(\partial R(x)),$$

Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) $R: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lsc convex function. The associated correspondence operator $\mathcal{J}_R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is

 $\mathcal{J}_R(S) \stackrel{\text{\tiny def}}{=} \bigcup_{x \in S} \operatorname{ri}(\partial R(x)),$

- ${}$ \mathcal{J}_R is increasing for the inclusion.
- To be interesting for sensitivity analysis, it should be decreasing for the partial ordering \leq .
- This is captured in mirror stratification.

Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) $R: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lsc convex function. The associated correspondence operator $\mathcal{J}_R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is

 $\mathcal{J}_R(S) \stackrel{\text{\tiny def}}{=} \bigcup_{x \in S} \operatorname{ri}(\partial R(x)),$

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stratification $\mathcal{M} = \{M_i\}_{i \in I}$ of dom (∂R) and a dual stratification $\mathcal{M}^* = \{M_i^*\}_{i \in I}$ of dom (∂R^*) if :

(i) Conjugation induces a duality pairing between \mathcal{M} and \mathcal{M}^* , and $\mathcal{J}_R : \mathcal{M} \to \mathcal{M}^*$ is invertible with $\mathcal{J}_R^{-1} = \mathcal{J}_{R^*}$.

(ii) \mathcal{J}_R is decreasing for the relation \leq : for any $(M, M') \in \mathcal{M}^2$

$$M \leq M' \iff \mathcal{J}_R(M) \geq \mathcal{J}_R(M').$$

Definition (Correspondence operator [Daniilidis-Drusvyatskiy-Lewis 13]) $R: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lsc convex function. The associated correspondence operator $\mathcal{J}_R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is

 $\mathcal{J}_R(S) \stackrel{\text{\tiny def}}{=} \bigcup_{x \in S} \operatorname{ri}(\partial R(x)),$

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stratification $\mathcal{M} = \{M_i\}_{i \in I}$ of dom (∂R) and a dual stratification $\mathcal{M}^* = \{M_i^*\}_{i \in I}$ of dom (∂R^*) if :

(i) Conjugation induces a duality pairing between \mathcal{M} and \mathcal{M}^* , and $\mathcal{J}_R : \mathcal{M} \to \mathcal{M}^*$ is invertible with $\mathcal{J}_R^{-1} = \mathcal{J}_{R^*}$.

(ii) \mathcal{J}_R is decreasing for the relation \leq : for any $(M, M') \in \mathcal{M}^2$

 $M \leq M' \iff \mathcal{J}_R(M) \geq \mathcal{J}_R(M').$

Remark The theory can be generalized to set-valued maximal monotone mappings just as well.

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

Example ($\ell_{1,2}$ **norm)** $R(x) = ||x||_{\mathcal{B}} = \sum_{B \in \mathcal{B}} ||x_B||_2$, is mirror-stratifiable with respect to $\mathcal{M} = \{\{0\}, \mathbb{R}^{|B|} \setminus \{0\}\}^K$ and $\mathcal{M}^* = \{\mathbb{S}^{|B|-1}, \operatorname{int}(\mathbb{B}_{\ell_2^{|B|}})\}^K$.

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

Example ($\ell_{1,2}$ **norm)** $R(x) = ||x||_{\mathcal{B}} = \sum_{B \in \mathcal{B}} ||x_B||_2$, is mirror-stratifiable with respect to $\mathcal{M} = \{\{0\}, \mathbb{R}^{|B|} \setminus \{0\}\}^K$ and $\mathcal{M}^* = \{\mathbb{S}^{|B|-1}, \operatorname{int}(\mathbb{B}_{\ell_2^{|B|}})\}^K$.

Example (Nuclear norm) $R(x) = ||x||_* = \sum_{i=1}^r \sigma_i(x)$, $x \in \mathbb{R}^{n_1 \times n_2}$ is mirrorstratifiable with respect to

$$M_{i} = \{ X \in \mathbb{R}^{n \times n} : \operatorname{rang}(X) = i \}$$

$$M_{i}^{*} = \{ U \in \mathbb{R}^{n} : \sigma_{1}(U) = \dots = \sigma_{i}(U) = 1, \forall j > i, |\sigma_{j}(U)| < 1 \}.$$

Calculus

Proposition (Separability) If $R_l : \mathbb{R}^{n_l} \to \mathbb{R} \cup \{+\infty\}$ is mirror-stratifiable, $l = , \dots, L$, w.r.t. \mathcal{M}_l and \mathcal{M}_l^* , then $\sum_{l=1}^L R_l(x_l)$ is mirror-stratifiable w.r.t. $\mathcal{M}_1 \times \dots \times \mathcal{M}_L$ and $\mathcal{M}_1^* \times \dots \times \mathcal{M}_L^*$.

Calculus

Proposition (Separability) If $R_l : \mathbb{R}^{n_l} \to \mathbb{R} \cup \{+\infty\}$ is mirror-stratifiable, $l = , \dots, L$, w.r.t. \mathcal{M}_l and \mathcal{M}_l^* , then $\sum_{l=1}^L R_l(x_l)$ is mirror-stratifiable w.r.t. $\mathcal{M}_1 \times \dots \times \mathcal{M}_L$ and $\mathcal{M}_1^* \times \dots \times \mathcal{M}_L^*$.

Proposition (Spectral Lifting of Polyhedral Functions) Let R^{sym} be a convex polyhedral and (signed) permutation-invariant function. Then the spectrally lifted function $R = R^{\text{sym}} \circ \sigma$ is mirror-stratifiable w.r.t. the smooth stratification $\{\sigma^{-1}(M^{\text{sym}})\}$ and its image by \mathcal{J}_R .

Calculus

Proposition (Separability) If $R_l : \mathbb{R}^{n_l} \to \mathbb{R} \cup \{+\infty\}$ is mirror-stratifiable, $l = , \dots, L$, w.r.t. \mathcal{M}_l and \mathcal{M}_l^* , then $\sum_{l=1}^L R_l(x_l)$ is mirror-stratifiable w.r.t. $\mathcal{M}_1 \times \dots \times \mathcal{M}_L$ and $\mathcal{M}_1^* \times \dots \times \mathcal{M}_L^*$.

Proposition (Spectral Lifting of Polyhedral Functions) Let R^{sym} be a convex polyhedral and (signed) permutation-invariant function. Then the spectrally lifted function $R = R^{\text{sym}} \circ \sigma$ is mirror-stratifiable w.r.t. the smooth stratification $\{\sigma^{-1}(M^{\text{sym}})\}$ and its image by \mathcal{J}_R .

Remark (Instability under the sum) The family of mirror-stratifiable functions is not stable under the sum :

- Consider the pair $R(x) = |x| + x^2/2$ and $R^*(u) = (\max\{|u| 1, 0\})^2/2$.

The reason : convex conjugacy is a duality between strict/strong convexity and smoothness.

MOA-MIA'17-21

Assumptions seem strong, but virtually all regularizers routinely used in signal/image processing, machine learning, statistics are mirror stratifiable.

- Assumptions seem strong, but virtually all regularizers routinely used in signal/image processing, machine learning, statistics are mirror stratifiable.
- Strata are generally not necessarily manifolds.

- Assumptions seem strong, but virtually all regularizers routinely used in signal/image processing, machine learning, statistics are mirror stratifiable.
- Strata are generally not necessarily manifolds.
- Polyhedral, semialgebraic, tame functions, where stratifications are manifolds.

Outline

- Mirror-stratifiable functions.
- Sensitivity analysis.
- Regularized inverse problems.
- Algorithmic implications.
- Numerical results.
- Conclusion.

Parametric composite problems

Parametric convex composite (smooth+nonsmooth) optimization problem :

$$x^{\star}(p) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} E(x, p) \stackrel{\text{\tiny def}}{=} F(x, p) + R(x),$$

- ${}$ $p \in \Pi, \Pi$ an open subset of a finite dimensional linear space.
- \checkmark $F(\cdot, p)$ is convex and smooth.
- \blacksquare R is proper lsc and convex.
- Sensitivity analysis is about the properties of $x^{\star}(p)$ to perturbations of $p \in \Pi$ around some reference point p_0 .
- Existing sensitivity results require non-degeneracy :

$$-\nabla F(x^{\star}(p_0), p_0) \in \mathbf{ri}(\partial R(x^{\star}(p_0))).$$

Sensitivity result

$$x^{\star}(p) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} E(x, p) \stackrel{\text{\tiny def}}{=} F(x, p) + R(x),$$

Theorem Assume that :

- (i) Well-posedness : $E(\cdot, p_0)$ has a unique minimizer $x^{\star}(p_0)$;
- (ii) Continuity : E is lsc on $\mathbb{R}^n \times \Pi$, $E(x^*(p_0), \cdot)$ is continuous at p_0 , and ∇F is continuous at $(x^*(p_0), p_0)$;
- (iii) Compactness : E is level-bounded in x uniformly in p locally around p_0 .

If R is mirror-stratifiable w.r.t. $(\mathcal{M}, \mathcal{M}^*)$, then $\forall p \sim p_0$, any minimizer $x^*(p)$ obeys

$$M_{x^{\star}(p_{0})} \leq M_{x^{\star}(p)} \leq \mathcal{J}_{R^{\star}}(M_{u^{\star}(p_{0})}^{*}) \qquad u^{\star}(p_{0}) \stackrel{\text{\tiny def}}{=} -\nabla F(x^{\star}(p_{0}), p_{0}).$$

Sensitivity result

$$x^{\star}(p) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} E(x, p) \stackrel{\text{\tiny def}}{=} F(x, p) + R(x),$$

Theorem Assume that :

- (i) Well-posedness : $E(\cdot, p_0)$ has a unique minimizer $x^{\star}(p_0)$;
- (ii) Continuity : E is lsc on $\mathbb{R}^n \times \Pi$, $E(x^*(p_0), \cdot)$ is continuous at p_0 , and ∇F is continuous at $(x^*(p_0), p_0)$;
- (iii) Compactness : E is level-bounded in x uniformly in p locally around p_0 .

If R is mirror-stratifiable w.r.t. $(\mathcal{M}, \mathcal{M}^*)$, then $\forall p \sim p_0$, any minimizer $x^*(p)$ obeys

$$M_{x^{\star}(p_0)} \leq M_{x^{\star}(p)} \leq \mathcal{J}_{R^{\star}}(M_{u^{\star}(p_0)}^{*}) \qquad u^{\star}(p_0) \stackrel{\text{\tiny def}}{=} -\nabla F(x^{\star}(p_0), p_0).$$

If R has a nice structure (*partial smoothness*) around $x^{\star}(p_0)$ and

 $u^{\star}(p_0) \in \operatorname{ri}(\partial R(x^{\star}(p_0))),$

then $\forall p \sim p_0$ [Lewis 2006]

$$M_{x^{\star}(p)} = M_{x^{\star}(p_0)} = \mathcal{J}_{R^{\star}}(M_{u^{\star}(p_0)}^{*}).$$

MOA-MIA'17-24

$$\min_{x \in \mathbb{B}_{\infty}} \frac{1}{2} \|x - p\|^2 \quad (\mathsf{P})$$

$$\min_{x \in \mathbb{B}_{\infty}} \frac{1}{2} \|x - p\|^2 \quad (\mathsf{P}) \qquad \qquad \min_{u \in \mathbb{R}^n} \frac{1}{2} \|u - p\|^2 + \|u\|_1 \quad (\mathsf{D})$$

$$\min_{x \in \mathbb{B}_{\infty}} \frac{1}{2} \|x - p\|^2 \quad (\mathsf{P})$$
$$\iff u^{\star}(p) = p - x^{\star}(p) \in N_{\mathbb{B}_{\infty}}(x^{\star}(p))$$

$$\min_{u \in \mathbb{R}^n} \frac{1}{2} \|u - p\|^2 + \|u\|_1 \quad (\mathsf{D})$$

Outline

- Mirror-stratifiable functions.
- Sensitivity analysis.
- Segularized inverse problems.
- Algorithmic implications.
- Numerical results.
- Conclusion.

Back to inverse problems

$$y = Ax_0 + \varepsilon$$

(P(y, \lambda)) $x^*(y, \lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$
(P(y, 0)) $x^*(y, 0) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} R(x)$ s.t. $y = Ax$

- Sensitivity analysis is about the properties of $x^{\star}(p)$, to perturbations of $p = (y, \lambda)$ around $p_0 = (y_0, 0)$.
- Previous sensitivity result for parametric composite problems does not apply : E(x, p) may not even be continuous at p_0 .

Known exact model recovery

$$y = Ax_0 + \varepsilon$$

$$(\mathsf{P}(y,\lambda)) \qquad x^*(y,\lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

$$\operatorname{Minimal}_{\ell_2}\operatorname{-norm} \operatorname{certificate}_{q_0} = \operatorname{A}_{T_{x_0}}^{+,*} e_{x_0}, \qquad \begin{array}{c} T_{x_0} = \operatorname{par}(\partial R(x_0))^{\perp} \\ e_{x_0} = \operatorname{P}_{\operatorname{Aff}(\partial R(x_0))}(0) \end{array}$$
Known exact model recovery

$$y = Ax_0 + \varepsilon$$

$$\left(\mathsf{P}(y,\lambda)\right) \qquad x^{\star}(y,\lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|^2 + \lambda R(x)$$

$$\operatorname{Minimal}_{\ell_2}\operatorname{-norm} \operatorname{certificate}_{q_0} = \operatorname{A}^{+,*}_{T_{x_0}} e_{x_0}, \qquad \begin{array}{c} T_{x_0} = \operatorname{par}(\partial R(x_0))^{\perp} \\ e_{x_0} = \operatorname{P}_{\operatorname{Aff}(\partial R(x_0))}(0) \end{array}$$

Theorem Let M_{x_0} be the "model" subset of x_0 . Assume that R has a nice structure on a nice subset M_{x_0} nearby x_0 , and that

Non-degeneracy condition $u_0 = A^* q_0 \in \operatorname{ri}(\partial R(x_0))$ and $\ker(A) \cap T_{x_0} = \{0\}.$

Then $\exists C_0, C_1 > 0$ depending only on x_0 such that for all (ε, λ) s.t. $C_0 \|\varepsilon\| \le \lambda \le C_1$, $(\mathsf{P}(y_0, 0))$ has a unique solution $x^*(y, \lambda)$ and satisfies

$$M_{x^{\star}(y,\lambda)} = M_{x_0}.$$

Enlarged model recovery

$$(\mathsf{P}(y,\lambda)) \qquad x^{\star}(y,\lambda) \in \operatorname*{Argmin}_{x \in \mathbb{R}^{n}} \frac{1}{2} \|y - Ax\|^{2} + \lambda R(x)$$
$$q_{0}(0,y) = \operatorname*{argmin}_{q \in \mathbb{R}^{m}} \|q\| \quad \text{s.t.} \quad A^{*}q \in \partial R(x^{\star}(0,y)).$$

Theorem Suppose that x_0 is the unique solution to $(P(y_0, 0))$. Assume that R is mirror-stratifiable w.r.t. $(\mathcal{M}, \mathcal{M}^*)$. Then $\exists C_0, C_1 > 0$ depending only on x_0 such that for all (ε, λ) s.t. $C_0 ||\varepsilon|| \le \lambda \le C_1$, there exists a minimizer $x^*(y, \lambda)$ of $(P(y, \lambda))$ localized as

$$M_{x_0} \le M_{x^*(p)} \le \mathcal{J}_{R^*}(M_{u_0}^*)$$
 $u_0 \stackrel{\text{def}}{=} A^* q_0(0, y_0).$

Outline

- Mirror-stratifiable functions.
- Sensitivity analysis.
- Segularized inverse problems.
- Algorithmic implications.
- Sumerical results.
- Conclusion.

$$\min_{x \in \mathbb{R}^n} F(x) + R(x)$$

- (A.1) F and $R \in \Gamma_0(\mathbb{R}^n)$, $F \in C^{1,1}(\mathbb{R}^n)$ with $1/\beta$ -Lipschitz gradient.
- (A.2) Non-empty set of minimizers.

$$\min_{x \in \mathbb{R}^n} F(x) + R(x)$$

- (A.1) F and $R \in \Gamma_0(\mathbb{R}^n)$, $F \in C^{1,1}(\mathbb{R}^n)$ with $1/\beta$ -Lipschitz gradient.
- (A.2) Non-empty set of minimizers.

$$\gamma_k \in [\epsilon, 2\beta - \epsilon]$$
 $x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Exact FB activity identification

$$\min_{x \in \mathbb{R}^n} F(x) + R(x)$$

 $\gamma_k \in [\epsilon, 2\beta - \epsilon]$ $x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Theorem Let the FB be used to create a sequence x_k which converges to x^* . Assume that R has a nice structure on a nice subset M_{x^*} nearby x^* , and

$$u^{\star} \stackrel{\text{def}}{=} -\nabla F(x^{\star}) \in \operatorname{ri} (\partial R(x^{\star})).$$

Then for k large enough

$$M_{x_k} = M_{x^\star}.$$

Exact FB activity identification

$$\min_{x \in \mathbb{R}^n} F(x) + R(x)$$

 $\gamma_k \in [\epsilon, 2\beta - \epsilon]$ $x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Theorem Let the FB be used to create a sequence x_k which converges to x^* . Assume that R has a nice structure on a nice subset M_{x^*} nearby x^* , and Non-degeneracy condition $u^* \stackrel{\text{def}}{=} -\nabla F(x^*) \in \operatorname{ri}(\partial R(x^*))$.

Then for k large enough

$$M_{x_k} = M_{x^\star}.$$

Enlarged FB activity identification

$$\min_{x \in \mathbb{R}^n} F(x) + R(x)$$

 $\gamma_k \in [\epsilon, 2\beta - \epsilon]$ $x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Theorem Let the FB be used to create a sequence x_k which converges to x^* . Assume that R is mirror-stratifiable w.r.t. $(\mathcal{M}, \mathcal{M}^*)$. Then for k large enough,

$$M_{x^{\star}} \leq M_{x_k} \leq \mathcal{J}_{R^{\star}}(M_{u^{\star}}^{\star}) \qquad \qquad u^{\star} \stackrel{\text{def}}{=} -\nabla F(x^{\star}).$$

Primal problem

$$\min_{x \in \mathbb{R}^n} R(x) + F(x) + (J \notin G)(Lx)$$

 $(J \diamondsuit G)(\cdot) \stackrel{\text{\tiny def}}{=} \inf_{v \in \mathbb{R}^m} J(\cdot) + G(\cdot - v)$

 $\min_{x \in \mathbb{R}^n} R(x) + F(x) + (J \notin G)(Lx)$

Primal problem

 $(J \stackrel{\diamond}{\vee} G)(\cdot) \stackrel{\text{\tiny def}}{=} \inf_{v \in \mathbb{R}^m} J(\cdot) + G(\cdot - v)$

(A.1) $R, F \in \Gamma_0(\mathbb{R}^n)$, and $\nabla F \in (1/\beta_F)$ -Lip (\mathbb{R}^n) . (A.2) $J, G \in \Gamma_0(\mathbb{R}^m)$, and G is β_G -strongly convex. (A.3) $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping. (A.4) $0 \in \operatorname{ran} (\partial R + \nabla F + L^* (\partial J \Box \partial G) L)$. $\partial J \Box \partial G \stackrel{\text{def}}{=} (\partial J^{-1} + \partial G^{-1})^{-1}$.

 $\min_{x \in \mathbb{R}^n} R(x) + F(x) + (J \notin G)(Lx)$

Primal problem

 $(J \checkmark G)(\cdot) \stackrel{\text{def}}{=} \inf_{v \in \mathbb{R}^m} J(\cdot) + G(\cdot - v)$

(A.1) $R, F \in \Gamma_0(\mathbb{R}^n)$, and $\nabla F \in (1/\beta_F)$ -Lip (\mathbb{R}^n) . (A.2) $J, G \in \Gamma_0(\mathbb{R}^m)$, and G is β_G -strongly convex. (A.3) $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping. (A.4) $0 \in \operatorname{ran} (\partial R + \nabla F + L^*(\partial J \Box \partial G)L)$. $\partial J \Box \partial G \stackrel{\text{def}}{=} (\partial J^{-1} + \partial G^{-1})^{-1}$.

$$\max_{v \in \mathbb{R}^m} -J^*(v) - G^*(v) - (R^* \, \forall F^*)(-L^*v)$$

Dual problem

$$\min_{x \in \mathbb{R}^n} R(x) + F(x) + (J \notin G)(Lx)$$

Primal problem

 $(J \checkmark G)(\cdot) \stackrel{\text{\tiny def}}{=} \inf_{v \in \mathbb{R}^m} J(\cdot) + G(\cdot - v)$

(A.1) $R, F \in \Gamma_0(\mathbb{R}^n)$, and $\nabla F \in (1/\beta_F)$ -Lip (\mathbb{R}^n) . (A.2) $J, G \in \Gamma_0(\mathbb{R}^m)$, and G is β_G -strongly convex. (A.3) $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping. (A.4) $0 \in \operatorname{ran} (\partial R + \nabla F + L^*(\partial J \Box \partial G)L)$. $\partial J \Box \partial G \stackrel{\text{def}}{=} (\partial J^{-1} + \partial G^{-1})^{-1}$. $\left| \max_{v \in \mathbb{R}^m} -J^*(v) - G^*(v) - (R^* \checkmark F^*)(-L^*v) \right|$

Dual problem

Classical Kuhn-Tucker theory : a pair $(x^{\star}, v^{\star}) \in \mathbb{R}^n \times \mathbb{R}^m$ solves both problems if

$$0 \in \begin{bmatrix} \partial R & L^* \\ -L & \partial J^* \end{bmatrix} \begin{pmatrix} x^* \\ v^* \end{pmatrix} + \begin{bmatrix} \nabla F & 0 \\ 0 & \nabla G^* \end{bmatrix} \begin{pmatrix} x^* \\ v^* \end{pmatrix},$$

Primal-dual splitting

Algorithm 1 A Primal–Dual splitting method

until convergence;

- Can be view as forward-backward splitting after renorming [Vu 2011].
- Covers many existing algorithms.
- Other schemes are possible: [Briceños-Arias and Combettes, Combettes et al. 2012].

Enlarged PD activity identification

$$\min_{x \in \mathbb{R}^n} R(x) + F(x) + (J \notin G)(Lx)$$

 $(J \diamondsuit G)(\cdot) \stackrel{\text{\tiny def}}{=} \inf_{v \in \mathbb{R}^m} J(\cdot) + G(\cdot - v)$

Theorem Consider the PD Algorithm 1 with $\theta = 1$ and γ_R, γ_J such that

$$2\min\left(\beta_{F},\beta_{G}\right)\ \min\left(\frac{1}{\gamma_{J}},\frac{1}{\gamma_{R}}\right)\left(1-\sqrt{\gamma_{J}\gamma_{R}}\left\|L\right\|^{2}\right)>1.$$

Then $(x_k, v_k) \to (x^*, v^*)$, a Kuhn-Tucker pair. If moreover R (resp. J^*) is mirrorstratifiable wrt primal and dual stratifications $\{(M_i^R, M_i^{R^*})\}_i$ (resp. $\{(M_i^{J^*}, M_i^J)\}_i$), then for all k large enough, we have

$$M_{x^{\star}}^{R} \leq M_{x_{k}}^{R} \leq \mathcal{J}_{R^{\star}} \left(M_{-Lv^{\star} - \nabla F(x^{\star})}^{R^{\star}} \right),$$

$$M_{v^{\star}}^{J^{\star}} \leq M_{v_{k}}^{J^{\star}} \leq \mathcal{J}_{J} \left(M_{Lx^{\star} - \nabla G^{\star}(v^{\star})}^{J} \right).$$

$$\mathcal{M} \leq \mathcal{M} \leq \mathcal{M}$$

Outline

- Mirror-stratifiable functions.
- Sensitivity analysis.
- Segularized inverse problems.
- Algorithmic implications.
- Numerical results.
- Conclusion.

CS scenario

- 1000 realizations at random of (x_0, A, ε) : A Gaussian ensemble, $x_0 \in \{0, 1\}^n$.
- $R = \|\cdot\|_1 : (n,m) = (100,50), \|x_0\|_0 \in \{1,\cdots,30\}.$
- $R = \|\cdot\|_* : (20 \times 20, 300) = (100, 50), \operatorname{rank}(x_0) \in \{1, \cdots, 9\}.$
- Complexity of x_0 too large for CS theory to apply.

Solve :

$$x^{*}(y,\lambda) \in \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \frac{1}{2} \|y - Ax\|^{2} + \lambda R(x)$$
$$u_{0} = A^{*} \operatorname{argmin}_{q \in \mathbb{R}^{m}} \|q\| \quad \text{s.t.} \quad A^{*}q \in \partial R(x_{0}).$$

Stable exact model recovery ?

blue : exact recovery \longrightarrow red : enlarged recovery

No exact recovery in general

Enlarged model recovery

Proportion of x_0 such that it is is the unique solution of $(P(y_0, 0))$ and $\delta(x_0) \le \delta$. $\delta(x_0) = \dim(\mathcal{J}_{R^*}(M^*_{u_0})) - \dim(M_{x_0})$

and stable model stratum recovery in presence of even small noise.

Finite enlarged activity identification

Blue : trajectory for each realization x_0 such that $\delta(x_0) = 0 \Rightarrow$ finite identification of M_{x_0} . Red : trajectory for each realization x_0 such that $\delta(x_0) > 0 \Rightarrow$ finite identification of

$$M_{x_0} \le M \le \mathcal{J}_{R^*}(M_{u_0}^*).$$

Take away messages

- A unified analysis of model recovery under degeneracy.
- Mirror-stratification is a key:
 - Enlarged model recovery for inverse problems.
 - Enlarged activity identification for proximal splitting algorithms.
- Can be generalized to maximal monotone operators.
- Why the largest stratum seems to be identified ?
- Beyond convexity.
- Infinite dimension.

Preprints on arxiv and papers on

https://fadili.users.greyc.fr/

Thanks Any questions ?