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Linear inverse problems
Measurement/degradation
|
T
|
ro € R"” &
Forward model
® Throughout the talk : finite-dimensional real setting.
® cisthe noise.
» A:R™ — R"is alinear measurement/degradation operator.
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Linear inverse problems
Inverse problem
N
=
o
E
Forward model
® Throughout the talk : finite-dimensional real setting.
®» < isthe noise.
» A:R™ — R"is alinear measurement/degradation operator.
Objective
Recover x( from y is an ill-posed inverse problem.
— —
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Regularization

Inverse problem

™M B .

Forward model

xo typically lives
INn a low-dimensional subsgt_ of

Prior knowledge
(regularization, constraints)

%n
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Regularization

Inverse problem

Prior knowledge
(regularization, constraints)

- c xo typically lives
a in alow-dimensional subset of R™
To € R" S

Forward model

® Many applications in data sciences: signal/image processing,
machine learning, statistics, etc..

® Solve an inverse problem through regularization :

r*(y,\) € Argmin F(Ax,y)+\ R(x)
F(-,y)and R € T'o(R™) Data fidelity Regularization, constraints

o R promotes objects living in the same manifold as x. -
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N B

Low-complexity regularization

mIiRn F(Az,y) + AR(x) F(,y)and R € Iz(R")
TreIR™

Low-complexity of xg <= Low-dimensional subset M,

L _|
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Low-complexity regularization

mIiRn F(Az,y) + AR(x) F(,y)and R € Iz(R")
Trelk™

Low-complexity of xg <= Low-dimensional subset M,

Sparse vectors
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Low-complexity regularization

mIiRn F(Az,y) + AR(x) F(,y)and R € Iz(R")
Trelk™

Low-complexity of xg <= Low-dimensional subset M,

Sparse vectors

R? R3

| R(x) = ||z,
(tightest convex relaxation of £;)
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N B

Low-complexity regularization

mIiRn F(Az,y) + AR(x) F(,y)and R € Iz(R")
Trelk™

Low-complexity of xg <= Low-dimensional subset M,

Sparse vectors Low-rank matrices

R? R3

| R(x) = ||z,
(tightest convex relaxation of £;)
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N B

Low-complexity regularization

mIiRn F(Az,y) + AR(x) F(,y)and R € Iz(R")
TreIR™

Low-complexity of xg <= Low-dimensional subset M,

Sparse vectors Low-rank matrices

——--~

Sym, (R)
R2 RS SO )
| R(x) = ||f[, | R(x) = ||z,
(tightest convex relaxation of /) (tightest convex relaxation of rank)

L _|
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Low-complexity regularization

Group sparsity

Analysis sparsity
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Regularization guarantees
Z/ZZfX$Q-%ET
r*(y,\) € Argmin F(Ax,y) + AR(x)

rER™

_|
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Regularization guarantees
Z/ZZfX$Q-+EE
r*(y,\) € Argmin F(Az,y) + AR(x)

rER™

® Which conditions to ensure :
® Exact recovery in the noiseless case : 2* (07, Axg) = xo.
® Stable recovery : p(x*(y, A), zg) = O(]|]]).
$ z*(y,\) € My, and/or M« xy © My,.

L -
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Regularization guarantees
Yy = A$Q + &
r*(y,\) € Argmin F(Az,y) + AR(x)

rER™

® Which conditions to ensure :
® Exact recovery in the noiseless case : 2* (0", Axg) = xp.
® Stable recovery : p(x*(y, A), zg) = O(]|]]).
$ z*(y,\) € My, and/or M« xy © My,.

® Algorithmic implications :
® Run an algorithm A and generate iterates x. — *(y, ).
® Which conditions guarantee finite activity identification

Tl © Mx*(y,)\) and/or M, C Mx*(y,A)°
L -
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Notations

OR : subdifferential of R.

N¢ : normal cone of C.

Aff(C) : affine hull of C.
par(C') : subspace parallel to C.
ri(C') : relative interior of C.

S, = par(OR(z)), T, = S=.

-
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Known results: stable recovery
y = Axy+¢

1
™ (y, \) € Argmin 5 ly — Az|* + A\R(z)
rER™

L _|
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| ]
Known results: stable recovery
Yy = AZC() + €
(Y, A) € Argmin IIy Az|* + AR(z)
reER™
Theorem Assume that
Non-degeneracy condition
T,, = par(OR (o))" Im(A*) M 11 (8R($0)) and kGI’(A) M Tazo — {O}
Then, choosing \ = *(y, \) obeys
|z*(y, A) — zoll = |27 (yo + &, A) — 2, o+ || = O(ll€]]) -
| |
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Known results: stable model recovery

Yy = AZE() —+ £
1
v*(y,\) € Argmin = ||y — Az||® + AR()
Minimal ¢3-norm certificate o = A e,,.  Lwo = par(OR(z0))"
o €xo = PAf(0R(20))(0)
| _
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Known results: stable model recovery

Yy = AZE() + &
1 2
z”(y,A) € Argmin = ||y — Az|” + AR(x)
Minimal /5-norm certificate go = A" e,,.  Lzo = par(OR(z0))"
. "0 €xo = PAf(0R(20))(0)
Theorem Let M, be the "model” subset of xo. Assume that R has a nice structure
on a nice subset M . nearby xq, and that

Non-degeneracy condition

ug = A"qo € 1i (O0R(z9)) and ker(A)NT,, =1{0}.

—

Then dCy, C7 > 0 depending only on xq such that for all (¢, \) s.t. Cy ||e]| < A < Cf,

the solution x*(\,y) is unique and satisfies{g:*(y, A) e M,,.
0

_|
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IEnown results: finite activity identiﬁcatio?l

nnn—ww Az|” + AR(x)

rER™ 2

e |62/ [JAlF | @41 = proxy, g (Tk + VAT (y — Azy))

L _|
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IEnown results: finite activity identiﬁcatio?l

mm—Hy AxH + AR(x)

rER™ 2

€ | 2/JAIP — e Tr1 = Proxy, g (Tk + WA (Y — Azy))

Theorem Let the FB be used to create a sequence x;. which converges to x*. As-

sume that R has a nice structure on a nice subset M.~ nearby x™, and

Non-degeneracy condition
A*(y — Ax™) € Ari (OR(z™)) .

Then x;. € M« for k large enough.

L _|
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IEnown results: finite activity identiﬁcatio?l

mm—Hy AxH + AR(x)

rER™ 2

€ | 2/JAIP — e Tr1 = Proxy, g (Tk + WA (Y — Azy))

Theorem Let the FB be used to create a sequence x;. which converges to x*. As-

sume that R has a nice structure on a nice subset M.~ nearby x™, and

Non-degeneracy condition
A*(y — Ax™) € i (OR(z™)).

Then x;. € M« for k large enough.
If R has a nice structure on a nice subset M, nearby xq, and

Non-degeneracy condition

— A%qg € 1i (@R(QZ‘Q)) and ker(A) N1z, = {O}

Then 3Cy, C7 > 0 depending only on xq such that for all (¢, \) s.t. Cy ||e|| < X < (4,
x € M., for k large enough.

L _|
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Regularization guarantees: summary
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Regularization guarantees: summary

® Non-degeneracy is ubiguitous.
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Regularization guarantees: summary

® Non-degeneracy is ubiguitous.

® Structure of the regularizer is important.
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Regularization guarantees: summary

® Non-degeneracy is ubiguitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
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Regularization guarantees: summary

® Non-degeneracy is ubiguitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):
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Regularization guarantees: summary

® Non-degeneracy is ubiguitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):

Proposition R = ||-||;, A;; ~iia N(0,1), and s = ||zo||,-

(i) Ifm > 2slog(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(i) If m > 2tslog(n) + s, t > 1, then qq is a non-degenerate dual certificate.

L -

MOA-MIA17-12



~ P N
Regularization guarantees: summary

® Non-degeneracy is ubiquitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):

Proposition R = ||-||;, A;; ~iia N(0,1), and s = ||zo||,-

(i) Ifm > 2slog(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(i) If m > 2tslog(n) + s, t > 1, then qq is a non-degenerate dual certificate.

® Mostly unlikely for challenging inverse problems (e.qg.
deconvolution).

L -
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Regularization guarantees: summary

® Non-degeneracy is ubiquitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):

Proposition R = ||-||;, A;; ~iia N(0,1), and s = ||zo||,-

(i) Ifm > 2slog(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(i) If m > 2tslog(n) + s, t > 1, then qq is a non-degenerate dual certificate.

® Mostly unlikely for challenging inverse problems (e.qg.
deconvolution).

® What about these intricate situations ?

L -
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Regularization guarantees: summary

® Non-degeneracy is ubiquitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):

Proposition R = ||-||;, A;; ~iia N(0,1), and s = ||zo||,-

(i) Ifm > 2slog(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(i) If m > 2tslog(n) + s, t > 1, then qq is a non-degenerate dual certificate.

® Mostly unlikely for challenging inverse problems (e.qg.
deconvolution).

® What about these intricate situations ?

® What about even CS with insufficient number of measurements ?

L -
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Regularization guarantees: summary

® Non-degeneracy is ubiquitous.
® Structure of the regularizer is important.

® Does non-degeneracy hold in practical problems:
® Yesine.g. compressed sensing (CS):

Proposition R = ||-||;, A;; ~iia N(0,1), and s = ||zo||,-

(i) Ifm > 2slog(n/s) + 7/5s, then there exists a non-degenerate dual certificate.

(i) If m > 2tslog(n) + s, t > 1, then qq is a non-degenerate dual certificate.

® Mostly unlikely for challenging inverse problems (e.qg.
deconvolution).

nat about these intricate situations ?

= =

nat about even CS with insufficient number of measurements ?

Can we say anything at all under degeneracy ?

e e @

-

MOA-MIA17-12



N B

Regularization guarantees: recap

The answer is YES if we have some structure

L E— I
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Regularization guarantees: recap

The answer is YES if we have some structure

ER——

® Known results:
® Assume non-degeneracy and some structure.
® Exact model recovery.

L -
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| n

Regularization guarantees: recap

The answer is YES if we have some structure

® Known results:
® Assume non-degeneracy and some structure.
® Exact model recovery.

® Our results in this talk:
® Degeneracy and some structure.
® Some model recovery: model localization.

L -

MOA-MIA17-13



Outline

® Mirror-stratifiable functions.

® Sensitivity analysis.

® Regularized inverse problems.
® Algorithmic implications.

® Numerical results.

® Conclusion.

-
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Outline
® Mirror-stratifiable functions.
9
i _
9o
9
i

_|
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Stratification

Definition A stratification of a set D C R™ is a finite disjoint partition M = { M, };c
such that the partitioning sets (strata) fit nicely, i.e. ¥(M, M’) € M? we have

MnNc(M)#0 = M C cl(M).

L -
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Stratification

Definition A stratification of a set D C R™ is a finite disjoint partition M = { M, };c
such that the partitioning sets (strata) fit nicely, i.e. ¥(M, M’) € M? we have

Mncd(M)#0 = M Ccl(M).
Mo

My
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Stratification

Definition A stratification of a set D C R™ is a finite disjoint partition M = { M, };c
such that the partitioning sets (strata) fit nicely, i.e. ¥(M, M’) € M? we have

Mncd(M)#0 = M Ccl(M).
Mo

My

3 oo

® A stratification is naturally endowed with the partial ordering < :

M<M <+ MccdM) < Mncl(M)#D0.
5 < M, < M, < M < M, B
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Mirror-stratifiable functions

Definition (Correspondence operator ) R: R* —
R U {400} is a proper Isc convex function. The associated correspondence operator
Jr: R*" = R" js

Ir(8) = | ri(0R(2)).

reS

L -
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B Mirror-stratifiable functions E

Definition (Correspondence operator ) R: R* —
R U {+o0} is a proper Isc convex function. The associated correspondence operator
Jr: R*" = R" js

Ir(8) = | ri(0R(2)).

reS

® 7 isincreasing for the inclusion.

® To be interesting for sensitivity analysis, it should be decreasing for the partial
ordering <.

® This is captured in mirror stratification.

L -
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Mirror-stratifiable functions

Definition (Correspondence operator ) R: R* —
R U {+o0} is a proper Isc convex function. The associated correspondence operator
Jr:R*" =2 R" js

Ir(8) = | ri(0R(2)).

reS

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stra-
tification M = {M,};,c; of dom(OR) and a dual stratification M* = {M}*},c1 of
dom(OR*) if :

(i) Conjugation induces a duality pairing between M and M*, and Jr : M — M*
is invertible with 75 ' = Jg-.

(i) Jr is decreasing for the relation < : for any (M, M') € M?

M <M < Jr(M)> Jr(M).

L -
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Mirror-stratifiable functions

Definition (Correspondence operator ) R: R* —
R U {+o0} is a proper Isc convex function. The associated correspondence operator
Jr:R*" =2 R" js

Ir(8) = [ ri(0R(2)).

reS

Definition (Mirror stratification) R is mirror-stratifiable with respect to a primal stra-
tification M = {M,};,c; of dom(OR) and a dual stratification M* = {M}*},c1 of
dom(OR*) if :

(i) Conjugation induces a duality pairing between M and M*, and Jr : M — M*
is invertible with 75 ' = Jg-.

(i) Jr is decreasing for the relation < : for any (M, M') € M?
M <M < Jr(M)> Jg(M).

Remark The theory can be generalized to set-valued maximal monotone mappings
just as well.

L -
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Mirror-stratifiable functions
= ||; H1 R* =)y _<1

dom(@R dom(Np_ ) = B

jll-lll(Mi) — U:UEMi ri(0||z|l,) = M

M
1 M3 M M3
»
L —1
00, 0L {0110, 400" NIE = IR M=y

MOA-MIA17-18



- Examples

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

L _|
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- Examples

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

1 1

Example ({12 norm) R(x) = ||z|z = > _gcpllzBlls, s mirror-stratifiable with res-
pect to M = {{0},RIBI\ {0}} ¥ and M* = {SIBI=1 int(B (Byiz0)}
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Examples

Example ({12 norm) R(x) = ||z|z = > _gcgllTBll, is mirror-stratifiable with res-
pectto M = {{0},RIBI\ {0}} and M* = {SIBI=L int(B, 5 )} .

Example (Polyhedral functions) A polyhedral function is mirror-stratifiable.

Example (Nuclear norm) R(z) = |z||, = >.._, 0i(z), x € R™*"2 js mirror-
stratifiable with respect to
M, = {XeR™" : rang(X) =i}
M = {UeR" :0U)=---=0(U)=1,Y5>1, |0;(U)| <1}.
L _|
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Calculus

Proposition (Separability) If R; : R™ — R U {400} is mirror-stratifiable, | =

, o, L, wrt. M; and M7, then Zle Ry (x;) is mirror-stratifiable w.r.t. My x --- X

My and M7 x -+ x M7.

L _
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Calculus

Proposition (Separability) If R; : R™ — R U {400} is mirror-stratifiable, | =

, o, L, wrt. M; and M7, then Zle Ry (x;) is mirror-stratifiable w.r.t. My x --- X

My and M7 x -+ x M7.

Proposition (Spectral Lifting of Polyhedral Functions) Let R>™ be a convex po-
lyhedral and (signed) permutation-invariant function. Then the spectrally lifted function

R = R™ o ¢ is mirror-stratifiable w.r.t. the smooth stratification {o~1(M>¥™)} and

its image by Jr.
L _
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B Calculus

Proposition (Separability) If R; : R™ — R U {400} is mirror-stratifiable, | =
, o, L, wrt. M; and M7, then Zle Ry (x;) is mirror-stratifiable w.r.t. My x --- X
My and M7 x -+ x M7.

Proposition (Spectral Lifting of Polyhedral Functions) Let R>™ be a convex po-
lyhedral and (signed) permutation-invariant function. Then the spectrally lifted function
R = R™ o ¢ is mirror-stratifiable w.r.t. the smooth stratification {o~1(M>¥™)} and
its image by Jr.

Remark (Instability under the sum) The family of mirror-stratifiable functions is not
stable under the sum :
® Consider the pair R(x) = |z| + 22 /2 and R*(u) = (max{|u| — 1,0})%/2.
® 7r(R)=R\{-1,1} = Jr cannot be a pairing between any two stratifications
of R.
® The reason : convex conjugacy is a duality between strict/strong convexity and
smoothness.

| -
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Ubiquity of mirror-stratification

L _|
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Ubiquity of mirror-stratification

® Assumptions seem strong, but virtually all regularizers routinely
used in signal/image processing, machine learning, statistics are
mirror stratifiable.

L -
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B Ubiquity of mirror-stratification E

® Assumptions seem strong, but virtually all regularizers routinely

used in signal/image processing, machine learning, statistics are
mirror stratifiable.

® Strata are generally not necessarily manifolds.

L -
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Ubiquity of mirror-stratification

® Assumptions seem strong, but virtually all regularizers routinely
used in signal/image processing, machine learning, statistics are
mirror stratifiable.

® Strata are generally not necessarily manifolds.

® Polyhedral, semialgebraic, tame functions, where stratifications are
manifolds.

L -
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Outline

N _
® Sensitivity analysis.
<

L I B

_|
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Parametric composite problems

® Parametric convex composite (smooth+nonsmooth) optimization problem :

«*(p) € Argmin E(z, p) = F(z,p) + R(x),
relR™
® p c 11, II an open subset of a finite dimensional linear space.
® F(-,p)is convex and smooth.
® R is proper Isc and convex.
® Sensitivity analysis is about the properties of 2*(p) to perturbations of p € II
around some reference point py.

® Existing sensitivity results require non-degeneracy :

~VF(x"(po),po) € ri(OR(z™(po))-

L -
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B Sensitivity result

2*(p) € Argmin E(z,p) £ F(z,p) + R(x),
Theorem Assume that : el
(i) Well-posedness : E(-, pg) has a unique minimizer x*(pg) ;

(i) Continuity : F is Isc on R™ x II, E(x*(pg),-) is continuous at pg, and VF' is
continuous at (x*(po ), po) ;

(i) Compactness : L is level-bounded in x uniformly in p locally around py.

If R is mirror-stratifiable w.r.t. (M, M*), then¥p ~ pg, any minimizer x*(p) obeys

Ma:*(po) S Mx*(p) S jR*( :* (po)) u”*(po) = —VF(x*(po),po)-

L -
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B Sensitivity result

2*(p) € Argmin E(z,p) £ F(z,p) + R(x),
Theorem Assume that : el
(i) Well-posedness : E(-, pg) has a unique minimizer x*(pg) ;

(i) Continuity : ' is Isc on R™ x 11, E(x*(po), -) is continuous at py, and VI is
continuous at (x*(po ), po) ;

(i) Compactness : L is level-bounded in x uniformly in p locally around py.

If R is mirror-stratifiable w.r.t. (M, M*), then¥p ~ pg, any minimizer x*(p) obeys

Ma:*(po) S Mx*(p) S jR*( :* (po)) u”*(po) = —VF(x*(po),po)-

® |[f R has a nice structure (partial smoothness) around x*(pg) and

u*(po) € ri(OR(z*(po)),

then Vp ~ pg

L Mw*(p) — Mw*(po) = Jr~( :Z*(po))° |
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reB

|z —p||* (P)

Example
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min —
reB

|z —p[* (P)

Example

min —
UERM 2

2
lu—pl” + ||lul, (D)

-
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ﬁ ]
Example
min + |z — p|? (P) min = ||lu — p|f? + lull, (D)
reB ? UER™ 2 1

<~ u*(p) =p—2*(p) € Np__ (z*(p))

| |
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Example
1 1
Sl P ey
min o [z —p||° (P) min = fJu—p| + [lull, (D)
< u*(p) =p—a*(p) € Np_ (z*(p))
u*(po) € ri(Ne.. (z*(po)))
Ng.. (z"(po))
/po
™ (po) / u”(po)
O
M = {{-11] = 111} M =A]= 00, 00 {0310, Fooy”
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Example
1 1
Tl » Sl
min o ||z pll* (P) min = fJu—p| + [lull, (D)

M = {{-11] = 111} M =A]= 00, 00 {0310, Fooy”
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Example
] ]
Sl P Z
min o ||z pll* (P) min = fJu—p| + [lull, (D)

M = {{-11] = 111} M =A]= 00, 00 {0310, Fooy”
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Example
min ! |z —p||* (P) min ! HU —plI* + [lull, (D)
rEB 2 uwcER™ 2 !
<~ u*(p) =p—2*(p) € Np__ (z*(p))
u*(po) € rbd(Ng,, (*(po)))
Ng, (z”(po))
Ho
¢
M,
Mo u*i.ﬂo)
z” (po)
®
o
M ={{-1}] = L1 {1}}" M =] = 00,0[,{0},]0 +Oj}
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Example
min = |lz — p|? (P) min > [lu— p|* + Ju, (D)
reB 2 weER” 9 1
— u*(p) =p—2*(p) € Ng_ (z*(p))
uw*(po) € rtbd(Np_ (z*(po)))
Ng_ (2" (po))
Ho P
@
M u* 0
9
M = {{=1}] - 1,1 {1}}" M = {] = 00,0[, {0},]0, +oo[}"
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ﬁ |
Example
1 1
min o [z —p||° (P) min = fJu—p| + [lull, (D)
< u*(p) =p—a*(p) € Np_(z*(p))
u*(po) € rbd(Np, (™ (po)))
Ng_. (2" (po))
P Ho P
*9
M x™(p u* 0
-
M = {{-1}] = 1, 1] {1}}" M = {] = 5,0[. {0},0, +o0[}"
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B ]
Example
min = [z —p|® (P) min > [lu— p|* + Jul, (D)
reB 2 weER” 9 1
< u*(p) =p—2"(p) € Np_ (z*(p))
uw*(po) € rbd(Np_ (*(po)))
No.. (" (po))
P bo P
LI
M-y | U*ipo
= gﬁ_ T (po) ) u*(p)
Mo (poy = M1 < Myx(p) < T, (M (pg)) = Mo /
9
M* = {{~1},] - L1 {1}}" M ={] = 00,0[, {0},]0, +oof}"
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9
9
® Regularized inverse problems.
9o
9
X

_|
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Back to inverse problems

Z/::fX$Q-%ET
(P(y,A))  «*(y.)) € Argmin 3 [y — Az’ + AR()
reR™
(P(y,0))  2*(y,0) € Argmin R(z) s.t. y= Az
rEeR™

® Sensitivity analysis is about the properties of x*(p), to perturbations of p =
(y, A) around pg = (y0,0).

® Previous sensitivity result for parametric composite problems does not apply :
FE(x,p) may not even be continuous at py.

L -
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B ]
Known exact model recovery
y=Axg+¢
(P(y,A))  «*(y.)) € Argmin 3 [y — Az’ + AR()
rER™
Minimal ¢5-norm certificate qp = Ar}:: €0 Zxo = gi;(gg((x?))gg)
L |
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—
Known exact model recovery

Y = AZC() + £
1
(P(y,N))  @*(y,A) € Argmin 5 [ly — Az||” + AR(z)
relR™
Minimal #5-norm certificate gy = A}:: €, - T., = par(dR(z0)) "

Cro = PAH(@R(xo))(O)

Theorem Let M., be the "model” subset of xo. Assume that R has a nice structure
on a nice subset M . nearby xq, and that

Non-degeneracy condition

ug = A"qop € 1i (O0R(zg)) and ker(A)NT,, =1{0}.

Then 3C,, Cy > 0 depending only on x( such that for all (¢, X) s.t. Cy ||e]| < A < (7,
(P(yo,0)) has a unique solution x*(y, \) and satisfies

Mw*(y,)\) — Ma?() .

-
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Enlarged model recovery
Z/::fX$Q-%ET

(P(y,A))  «*(y.)) € Argmin 3 [y — Az’ + AR()

reR™

q0(0,y) = argﬂglin gl s.t. A*q € OR(2*(0,y)).
gelR™

Theorem Suppose that xq is the unique solution to (P(yo,0)). Assume that R is
mirror-stratifiable w.r.t. (M, M*). Then 34Cy, C; > 0 depending only on x such that

for all (¢,\) s.t. Cy lle|| < A < 4, there exists a minimizer x*(y, \) of (P(y, \))
localized as

Mxo S Maz*(p) S jR* (M,;ko) ug d:ef A*qO(O,yo).

-
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i
i
i
® Algorithmic implications.
i
i

_|
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EB splitting: class of problems
min F(z) + R(x)
(A.1) Fand R € I'o(R"), F € CH1(R™) with 1/8-Lipschitz gradient.
(A.2) Non-empty set of minimizers.
L _|
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| T ]
EB splitting: class of problems
min F(z) + R(x)
(A.1) Fand R € T'\(R"), F € CH1(R™) with 1/8-Lipschitz gradient.
(A.2) Non-empty set of minimizers.
T € [6,28 — € Tky1 = Prox.,, g (Tx — % VFE (7k))
L _|
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Exact FB activity identification

516111& F(x) 4+ R(x)

Tk € 6,26 — €] Tk1 = Proxy, g (Tk — % VFE(zk))

Theorem Let the FB be used to create a sequence x; which converges to x*. As-
sume that R has a nice structure on a nice subset M.~ nearby x*, and

u* & _VF(z*) e1i (OR(z*)).

Then for k large enough
M T — xT*

L _|
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Exact FB activity identification

516111& F(x) 4+ R(x)

Tk € [€,20 — ¢ Tk1 = Proxy, g (Tk — % VFE(zk))

Theorem Let the FB be used to create a sequence x;. which converges to x*. As-

sume that R has a nice structure on a nice subset M.~ nearby x*, and
Non-degeneracy condition

u & _VF(z*) i (OR(z*)).

Then for k large enough
M T — xT*

L _|
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" Enlarged FB activity identification

516111&% F(x) 4+ R(x)

Tk € 6,26 — €] Tk1 = Proxy, g (Tk — % VFE(zk))

Theorem Let the FB be used to create a sequence x;. which converges to x*. As-
sume that R is mirror-stratifiable w.r.t. (M, M*). Then for k large enough,

Mg+ < My, < Jg-(M) u* E ~VF(z*).

L -
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PD splitting: class of problems
5161%11 R(z)+ F(x)+ (JVG)(Lx) Primal problem
(JVG)(-) = infyerm J() + G(- = v)
L _|

MOA-MIA17-35



PD splitting: class of problems B

IIGIIiR% R(x)+ F(x)+ (JVG)(Lx) Primal problem

e— —

(JVG)() = infoerm J(-) + G(
1) R, Felyg(R"),and VF € (1/3,)-Lip(R").
2) J,G €Ty (R™),and G is §-strongly convex.
3) L :R" — R™ is a linear mapping.

A4) 0 € ran (OR+ VF + L*(0JUOG)L).

—1

0J00G £ (0T +0G~1) ",

L _|
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PD splitting: class of problems B

IIGIIiR% R(x)+ F(x)+ (JVG)(Lx) Primal problem

e— —

(JVG)() = infoerm J(-) + G(
1) R, Felyg(R"),and VF € (1/3,)-Lip(R").
2) J,G €Ty (R™),and G is §-strongly convex.
3) L :R" — R™ is a linear mapping.

A4) 0 € ran (OR+ VF + L*(0JUOG)L).

—1

0J00G £ (0T +0G~1) ",

zfgﬂ%}fg —J7(v) = GHv) = (BTV ET)(= L) Dual problem

| — T

L _|
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min R(x) + F'(x) +

rcR™

(J9G)() E infyepm J(-) + G(- — ) o

—J"
s — )

— G*(v) —

L :R"™ — R™ is a linear mapping.

(R ") (L")

PD splitting: class of problems

(JVG)(Lx)

M

A4) 0 € ran (OR+ VF + L*(0JUOG)L).
0J00G £ (971 +0G—1) .

e

M—

.

Primal problem

1) R, Felyg(R"),and VF € (1/3,)-Lip(R").
2) J,G €Ty (R™),and G is §-strongly convex.
.3)

Dual problem

Classical Kuhn-Tucker theory : a pair (x*,v*) € R™ x R" solves both problems if

OR L
0 e

~L 9J

VF
0

0
VG*

()

o -
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B Primal-dual splitting E

Algorithm 1 A Primal-Dual splitting method

Initial : Choose v,,v, > 0andf € [—1,4o0|. Fork =0, xg € R", vy € R™ repeat

Tky1 = prox, p(wx — v, VF(2r) — VL vk),  (primal GD)

R

Tha1 = Tha1 + 0(Tpr1 — k), (Extrapolation)

| Ukt1 = Prox, g« (U =7, VG (k) +7,LTk41),  (dual GA)

k=k+1
until convergence;

® Can be view as forward-backward splitting after renorming

® Covers many existing algorithms.

® Other schemes are possible:

L -
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Enlarged PD activity identification

min R(z) + F(z) + (J ¥ G)(Lx)

rcR™

(J v Q) () Zinfyepm J(-) + G(- — )

Theorem Consider the PD Algorithm 1 with6 = 1 and v, ~y, such that

2min (8, 8) min (£, 1) (1= P J2I7) > 1

J

Then (xp,vi) — (x*,v*), a Kuhn-Tucker pair. If moreover R (resp. J*) is mirror-
stratifiable wrt primal and dual stratifications { (M, M)} (resp. { (M, M)} ),
then for all k large enough, we have

R R R”
Mw* S Mxk S jR* (M—Lv*—VF(CB*)) )
MM < M Ccl(M)

J* J* J
Aﬁzﬂf f;'A4bk JJ (]V[Lw* (?*(v*)) .

L -

MOA-MIA17-37



© oo o0

Numerical results.

Outline
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CS scenario

1000 realizations at random of (g, A, €) : A Gaussian ensemble, xy € {0,1}".
R=1|:(n,m)=(100,50), ||zo|l, € {1, ,30}.
R =, : (20 x 20,300) = (100, 50), rank(z¢) € {1,--- ,9}.
Complexity of xg too large for CS theory to apply.
Solve :
1
v*(y,\) € Argmin = ||y — Az|® + AR()
QZ‘ERn 2
up = A*argmin ||q|| s.t. A%q € OR(xg).
qeR™
|
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istogram of ¢

| B
Stable exact model recovery ?
¢1-norm ||zo||, = 10 Nuclear norm rank(zg) = 4
0 = [l"(y, Mllo — [[zollg 0 = rank(z”(y, A)) — rank(zo)
| | | 04F | | |
0.12+ 0.35 |
0.1F 0.3+
0.08} < 0.25}
0.06] i 0.2
£0.15¢
0.04 T
0.1
0.02 0.05|
° 10 0
5
blue : exact recovery — red : enlarged recovery
No exact recovery in general
L — S— _|
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Enlarged model recovery

Proportion of zy such that it is is the unique solution of (P(yy,0))) and d(xzq) < 6.
d(xp) = dim( TR+ (M;O)) — dim(M,,)

Nuclear norm
1.

0.8+
0.6+
0.4+
0.2+
1 1 - S A== . == O 1 1 1
5 10 15 20 25 30 1 2 3 4 5 6 7 8
zoll, rank(zg)

blue : stable exact recovery —> red : unstable enlarged recovery

The intermediate curves: typical tradeoff between complexity of input vectors
and stable model stratum recovery in presence of even small noise.

L |
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‘= () o { ] [ ) () (] o =u
Finite enlarged activity identification
¢1-norm ||zg ||, = 10 Nuclear norm rank(zg) = 4
100 , , . 20 l l ;
| ——5=0
.‘ 18 K —0=3| ]
80 % 1 16} :
_o60F N > N
&& ‘ \H/ 12 : -
R -
— 40 = 10+
© gl
20+ 6L
0 1 . . T
500 1000 1500 2000 500 1000 1500 2000
k k

Blue : trajectory for each realization xz such that d(xy) = 0 = finite identification of M., .
Red : trajectory for each realization x( such that d(xzy) > 0 = finite identification of

Mxo S M S jR* (M,Z:O)
L _|
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Take away messages

A unified analysis of model recovery under degeneracy.
Mirror-stratification is a key:
® Enlarged model recovery for inverse problems.

® Enlarged activity identification for proximal splitting
algorithms.

Can be generalized to maximal monotone operators.
Why the largest stratum seems to be identified ?
Beyond convexity.

Infinite dimension.

-
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Preprints on arxiv and papers on

https://fadili.users.greyc.fr/

Thanks
Any questions ?

L _|
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http://www.greyc.ensicaen.fr/~jfadili
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