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Introduction

Setting: X Hilbert space, f : X — RU {400} convex |.s.c.
Problem: Minimize f(x), x € X.
Tool: My favorite algorithm.
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© Classic theory
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Classic convergence results

Let f = g + h be convex, with h L-Lipschitz smooth
Let Xpt1 = proxyz(xan — AVh(xs)), A €]0,2/L].

Theorem (general convex case)

e argmin f = () : x, diverges, no rates for f(x,) — inf f.

@ argmin f # () : x, weakly converges to x,, € argmin f, and
f(xp) —inff =0 (n71).
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Let f = g + h be convex, with h L-Lipschitz smooth
Let Xpt1 = proxyz(xan — AVh(xs)), A €]0,2/L].

Theorem (general convex case)

e argmin f = () : x, diverges, no rates for f(x,) — inf f.

@ argmin f # () : x, weakly converges to x,, € argmin f, and
f(xp) —inff =0 (n71).

Theorem (strongly convex case)

Assume that f is strongly convex. Then x, strongly converges to
Xoo € argmin f, and both iterates and values converge linearly.
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Classic convergence results

Assume f to be convex and (x,),en be generated by forward-backward.

function values | iterates
argmin f =0 | o(1) diverge
argmin f # 0 | o(n™1) | weak convergence

s. convex linear linear
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Classic convergence results

Assume f to be convex and (x,),en be generated by forward-backward.

function values | iterates

argmin f =0 | o(1) diverge

argmin f # 0 | o(n™1) | weak convergence
? ? ?

? linear linear

— Use geometry!
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Known examples

Ael(X,Y) yeY.

o f(x) = %|Ax — y|?, Xnt1 = xo — TA*(Axp — )
o If R(A) is closed, linear convergence.
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Known examples

AeL(X,Y), yeY.

1 2
o f(x) = 5[|Ax — y||%, Xny1 = Xp — TA*(Axs — y)
o If R(A) is closed, linear convergence.
o Else, strong convergence for iterates, arbitrarily slow.

o f(x) = allx|l1 + 31Ax = yI?, xnt1 = Sar (xn — TA*(Axa — ¥))

o In X =R, the convergence is linear.

o In X = /2(N), ISTA converges strongly?. Linear rates can also be
obtained under some conditions3. In fact not necessary®.

'Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
2Daubechies, Defrise, DeMol (2004)

3Bredies, Lorenz (2008)

“End of this talk



Known examples

AeL(X,Y), yeY.

1 2
o f(x) = 5[|Ax — y||%, Xny1 = Xp — TA*(Axs — y)
o If R(A) is closed, linear convergence.
o Else, strong convergence for iterates, arbitrarily slow.

o f(x) = alx|li + 3[|Ax = y[I*, xno+1 = Sar (xn — TA*(Axy — y))
o In X =R, the convergence is linear.
o In X = /2(N), ISTA converges strongly?. Linear rates can also be

obtained under some conditions3. In fact not necessary®.

@ Gap between theory and practice.

'Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
2Daubechies, Defrise, DeMol (2004)

3Bredies, Lorenz (2008)

“End of this talk



© Better rates with the help of geometry
@ Identifying the geometry of a function
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Conditioned and Lojasiewicz functions

Let p > 1 and Q C X and arbitrary set.

Definition
We say that f is p-conditioned on Q if 3yq > 0 such that

Vx € Q, %dist (x,argmin f)P < f(x) —inf f.
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Conditioned and Lojasiewicz functions

Let p> 1 and Q C X and arbitrary set.

Definition

We say that f is p-conditioned on Q if 3yq > 0 such that

Vx € Q, %dist (x,argmin f)P < f(x) —inf f.

@ The exponent p governs the local geometry of f, and then the
rates of convergence. Easy to get.

@ 7 governs the constant in the rates. Hard to estimate properly.

e "Equivalent" to Lojasiewicz inequality/metric subregularity?.

'Bolte, Nguyen, Peypouquet, Suter, 2015 - Garrigos, Rosasco , Villa, 2016.
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|dentifying the geometry: Some examples

@ strongly convex functions are 2-conditioned on X, yx =~
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@ strongly convex functions are 2-conditioned on X, yx =~
1

o f(x) = 3llAx —y|?

o If R(A) is closed, f is 2-conditioned on X, yx = o, (A*A).
o Else, complicated (see later).

e In RV, convex polynomial by parts functions are p-conditioned! on
sublevel sets, with p =1+ (d — 1), but 4r<,) unknown.
Example: f(x) = allx||1 + 3[|Ax — y|.

@ Almost any simple function used in practice: ||x||5, KL divergence,
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|dentifying the geometry: Some examples

@ strongly convex functions are 2-conditioned on X, yx =~
o F(x) = L|Ax — |
o If R(A) is closed, f is 2-conditioned on X, vx = o (A*A).
o Else, complicated (see later).

e In RN, convex polynomial by parts functions are p-conditioned! on
sublevel sets, with p =1+ (d — 1)V, but Yr<r unknown.
Example: f(x) = aflx||1 + 5[|Ax — y|.

@ Almost any simple function used in practice: ||x||5, KL divergence,

etc...

@ semi-algebraic functions are conditioned around minimizers?.

p and ~ unknown.

"Yang, 2009 + Li, 2012
2Bolte, Daniilidis, Lewis, Shiota, 2007
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ldentifying the geometry: two rules

Theorem: Sum rule!

Assume that f; and £, are respectively p; and p»-conditioned, up to
linear perturbations, on Q2 C X. Then, under some qualification
condition, f; 4+ f, is p-conditioned on Q with p = max{p1, p2}.

Theorem: Composition with linear operator (closed range)!

Assume that f is p-conditioned and smooth, up to linear perturbations,
on Q C X. Then, under some qualification conditions, f o A is
p-conditioned on A~1Q.

LLewis, Drusvyatskiy (2016) for p = 2; G., Rosasco, Villa (2016) for p > 1.
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ldentifying the geometry: two rules

Theorem: Sum rule!

Assume that f; and £, are respectively p; and p»-conditioned, up to
linear perturbations, on Q2 C X. Then, under some qualification
condition, f; 4+ f, is p-conditioned on Q with p = max{p1, p2}.

Theorem: Composition with linear operator (closed range)!

Assume that f is p-conditioned and smooth, up to linear perturbations,
on Q C X. Then, under some qualification conditions, f o A is
p-conditioned on A~1Q.

Not always true without QC! See ||M||s + || AM — Y||?.

LLewis, Drusvyatskiy (2016) for p = 2; G., Rosasco, Villa (2016) for p > 1.



© Better rates with the help of geometry

@ Exploiting the geometry
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Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)
Let (xn)nen be generated by the Forward-Backward, and suppose

o (Localization) (xn)nen C €,

o (Geometry) f is p-conditioned on €.

Then x, converges strongly to a minimizer x of f. Moreover, ¥n € N:
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Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let (xn)nen be generated by the Forward-Backward, and suppose
o (Localization) (xp)nen C 9,
o (Geometry) f is p-conditioned on .

Then x, converges strongly to a minimizer x of f. Moreover, ¥n € N:

Q if p =2, linear convergence with € €]0,1[, C >0
f(xpy1) — inf £ < &(f(xy) —inf f) and ||x, — xT|| < CVE",
@ if p > 2, sublinear convergence with C;, G, > 0

F(xp) — inf £ < Cuni=2 and |[x, — x1|| < Conp=2.

NB: All the constants depend on (L, A, p,yr.q, f(x°) — inf f).



Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)
e (Localization) (xp)nen C Q,
o (Geometry) f is p-conditioned on Q.

Then p = 2 gives linear rates, p > 2 sublinear rates.

Some remarks on the convergence result:
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Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

e (Localization) (xp)nen C Q,

o (Geometry) f is p-conditioned on Q.

Then p = 2 gives linear rates, p > 2 sublinear rates.

Some remarks on the convergence result:

@ These rates are optimal (see f(x) = ||x]|P).

@ Rates involve a generalized condition number k o< L/vf q.
For p =2 there is ¢ = k/(k + 1).
@ These results extends to the nonconvex setting.

@ These results extends to general first-order descent methods.
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (xp)nen C €,
o (Geometry) f is p-conditioned on .

Localization hypothesis seems a trick. And why general Q C X?
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (x,)nen C €,
o (Geometry) f is p-conditioned on .

Localization hypothesis seems a trick. And why general Q C X7

e Clarify the local vs global rates.
Y(d,r) €]0, 4002, f is p-conditioned on Q := B(x,8) N [f —inf < r].
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (xp)nen C €,
o (Geometry) f is p-conditioned on Q.

Localization hypothesis seems a trick. And why general Q C X7

e Clarify the local vs global rates.
Y(68,r) €]0, +oc[?, f is p-conditioned on Q := B(x, ) N [f — inf < r].
Fejer + descent = Vn > 0,x" € Q, = Global rates.
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (xp)nen C Q,
o (Geometry) f is p-conditioned on Q.

Localization hypothesis seems a trick. And why general Q C X?

e Clarify the local vs global rates.
e Some functions have nonlocal geometry Q : f(x) = ||Ax — y||°.

@ If Im A not closed, Haraux and Jendoubi show that no
conditioning hold on B(X%,¢).

@ We prove that conditioning holds on "Sobolev" spaces.
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)
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e Clarify the local vs global rates.
e Some functions have nonlocal geometry Q : f(x) = ||Ax — y||°.
e We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (x,)nen C €,
o (Geometry) f is p-conditioned on Q.

Localization hypothesis seems a trick. And why general Q C X7
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

o (Localization) (xp)nen C €,
o (Geometry) f is p-conditioned on €.

Localization hypothesis seems a trick. And why general Q C X?

e Clarify the local vs global rates.
e Some functions have nonlocal geometry Q : f(x) = ||Ax — y||?.
e We can restrict to low-dimensional sets.

If f =g+ h with h smooth and g partially smooth + QC, then

N € N, ¥n > N, x" € M (identification of active manifold)
— conditioning on M is enough, no need for strong convexity.
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Updated results

function values iterates

argmin f = () o(1) diverge

argmin f # () o(n™1) weak convergence
= -1

geometry, p > 2 0] (nPTF;> 0] (nPT2>

geometry, p = 2 linear linear

geometry, 1 < p < 2 | superlinear | superlinear

geometry, p =1 finite finite
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@ We have a spectra covering "almost" all convex functions in finite
dimensions® .
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Updated results

function values iterates

argmin f = () o(1) diverge

argmin f # () o(n™1) weak convergence
- -1

geometry, p > 2 0] (npfg> 0] (nf’j>

geometry, p = 2 linear linear

geometry, 1 < p < 2 | superlinear | superlinear

geometry, p =1 finite finite

Proposition

If linear rates hold on Q:
(3e €]0,1[)(Vx € Q) dist (FB(x), argmin f) < edist (x, argmin f),
then f is 2-conditioned on Q.




Updated results

function values iterates

argmin f = () o(1) diverge

argmin f # () o(n1) weak convergence
= =il

geometry, p > 2 0] (nPTF;> 0] (nPTZ>

geometry, p = 2 linear linear

geometry, 1 < p < 2 | superlinear | superlinear

geometry, p =1 finite finite

@ We have a spectra covering "almost" all convex functions in finite
dimensions! .

@ The hypothesis to get linear rates is minimal
@ Up to now, the infinite dimensional setting is less understood.

1Bolte, Daniilidis, Ley, Mazet - 2010
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© Inverse problems in Hilbert spaces
@ Linear inverse problems
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Least squares: f(x) = ||Ax — y||?

Assume that R(A) is not closed, and y € dom Af.
The FB method becomes xp+1 = x, — AA*(Ax, — y), xo = 0.
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Least squares: f(x) = ||Ax — y||?

Assume that R(A) is not closed, and y € dom Af.
The FB method becomes xp+1 = x, — AA*(Ax, — y), xo = 0.

x, converges to x' := Aty. But how fast?
— Old answer: it depends on the regularity of x.

In inverse problems, the spaces R(A*AH) play the role of Sobolev in L2.

Example: Sobolev regularity

If X =Y = L2([0,27]) and A is the integration operator, then

R(A*A*) = H?*([0, 27]).
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Least squares: Convergence analysis

Theorem: Geometry on Sobolev spaces

The least squares f is p-conditioned on each affine space
xt 4+ R(A*A*), with the exponent p = 2 4 L.

Fact: if x € R(A*A*) and xg = 0, then (x,)nen C xT + R(A*AM).

Theorem: Convergence for Landweber's algorithm

If xo =0, and xt € R(A*A*), then the convergence is sublinear:

f(xn) —inff =0 (n_(1+2“)) and [|x, — XTH =0 (n_”) .

1

NB: the exponent p =2 + =+ and the rates are tight.
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Least squares: what if argmin |[Ax — y||? =07

It might be that x' = ATy doesn't exist...
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Least squares: what if argmin |[Ax — y||? =07

It might be that x' = ATy doesn't exist...

Typically in learning we look for a function in L2(X x Y, p)
But in practice we work in a RKHS X C 2

Even if £ has no minimizers, we still want to estimate f(x") —inf f — 0
It will depend on how far the solution is from X.

We look at how regular is y' := proj (y,Im A) within ImA C Y.
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Least squares but no minimizers: Convergence analysis

Theorem: Geometry on Sobolev spaces (w.r.t. data space Y)

The least squares f is "p-conditioned" on each affine space
A (yT + R(AA*”)) v >0

with the exponent p =2 + (v — 1/2)7L.

Fact: if v < 1/2 then p <0 !l f behaves like ﬁ.

Theorem: Convergence for Landweber's algorithm

If xo =0, and y' € R(AA*"), then the convergence is sublinear:

f(xn) —inff =0 (n"%).
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Updated results

Assume f to be convex and (x,)nen be generated by a first-order
descent method.

function values iterates

argmin f = () o(1) diverge

geometry, p < 0 0 (npfp2> diverge

argmin f # () o(n71) weak convergence
= -1

geometry, p > 2 0] (nppr> 0] (npj>

geometry, p = 2 linear linear

geometry, 1 < p < 2 | superlinear | superlinear

geometry, p =1 finite finite
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© Inverse problems in Hilbert spaces

@ Sparse inverse problems
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Lasso in Hilbert spaces

Consider the Lasso in /?(N)

1
f(x) = allxlly + 5 [ Ax — yII?

How fast do converge ISTA? O(1/n)? linearly?
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Lasso in Hilbert spaces

Consider the Lasso in /?(N)

1
F(x) = allxlls + Sl Ax = yII”
How fast do converge ISTA? O(1/n)? linearly?

e linear rates if A is injective on finite supports
e linear rates if qualification condition holds
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Lasso in Hilbert spaces

Consider the Lasso in /?(N)
1 2
f(x) = allx|ls + 5 [Ax — ¥
How fast do converge ISTA? O(1/n)? linearly?

e linear rates if A is injective on finite supports
e linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists 2 such that (xp)nen C Q and f is 2-conditioned on Q. So
ISTA always converge linearly.
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Lasso in Hilbert spaces

Consider the Lasso in /?(N)
1 2
f(x) = allx|ls + 5 [Ax — ¥
How fast do converge ISTA? O(1/n)? linearly?

e linear rates if A is injective on finite supports
e linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists 2 such that (xp)nen C Q and f is 2-conditioned on Q. So
ISTA always converge linearly.

Similar result by replacing || - |1 with || - |1 + || - ||/
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Conclusion




If you had to remember ONE thing

You have a descent-related (dissipative?) algorithm?
Strong convexity gives you strong convergence and better rates?

Try to use the 2-conditioning:
v dist (x, argmin f)? < f(x) —inf f
— It should give the same results than strong convexity

— It applies to a way more general class of functions (actually super
sharp for linear rates)
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Conclusion/Discussion

@ Structural results allow a practical identification of geometry.
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Conclusion/Discussion

@ Structural results allow a practical identification of geometry.

@ Geometry sheds a new light on a priori unrelated results.

e Quantitative characterization of the geometry in the nonconvex
case is an active topic. E.g.: f(w) = > 4((xi, w) — yi).

@ Descent methods very well understood. Holds for general
first-order descent methods

Q@ (descent)  allxpi1 — xu|> < F(xn) — F(Xps1)
@ (1st order) HOF(xpi1)| < [xmer —

Allows even more structured methods (decomposition by blocs), or
variants (variable metric, inexact computations)
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Conclusion/Discussion

@ Structural results allow a practical identification of geometry.

o Geometry sheds a new light on a priori unrelated results.

@ Quantitative characterization of the geometry in the nonconvex
case is an active topic. E.g.: f(w) = > 0((x;, w) — yj).

@ Descent methods very well understood. Holds for general
first-order descent methods

@ Recently: application to stochastic gradient methods.

o Geometry is a powerful tool not only for rates, but also for
regularization! (see Silvia's talk)

o Can inertial methods benefit from this analysis? Are they
adaptive?
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Thanks for your attention |
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