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Introduction

Setting: X Hilbert space, f : X → R ∪ {+∞} convex l.s.c.
Problem: Minimize f (x), x ∈ X .
Tool: My favorite algorithm.

As optimizers, we often face the same questions concerning the
convergence of an algorithm:

(Qualitative result) For the iterates (xn)n∈N: weak, strong
convergence?
(Quantitative result) For the iterates and/or the values:
sublinear O (n−α) rates, linear O (εn), superlinear ?

It depends on the and the made on f .

Here we will essentially consider first order descent methods, and more
simply the forward-backward method.
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Classic convergence results

Let f = g + h be convex, with h L-Lipschitz smooth
Let xn+1 = proxλg (xn − λ∇h(xn)), λ ∈]0, 2/L[.

Theorem (general convex case)

argmin f = ∅ : xn diverges, no rates for f (xn)− inf f .
argmin f 6= ∅ : xn weakly converges to x∞ ∈ argmin f , and
f (xn)− inf f = o

(
n−1).

Theorem (strongly convex case)

Assume that f is strongly convex. Then xn strongly converges to
x∞ ∈ argmin f , and both iterates and values converge linearly.
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Classic convergence results

Assume f to be convex and (xn)n∈N be generated by forward-backward.

function values iterates
argmin f = ∅ o(1) diverge
argmin f 6= ∅ o(n−1) weak convergence

? ? ?

s. convex linear linear

−→ Use geometry!

Guillaume Garrigos 5/27



Classic convergence results

Assume f to be convex and (xn)n∈N be generated by forward-backward.

function values iterates
argmin f = ∅ o(1) diverge
argmin f 6= ∅ o(n−1) weak convergence
? ? ?
s. convex linear linear

−→ Use geometry!

Guillaume Garrigos 5/27



Classic convergence results

Assume f to be convex and (xn)n∈N be generated by forward-backward.

function values iterates
argmin f = ∅ o(1) diverge
argmin f 6= ∅ o(n−1) weak convergence
? ? ?
? linear linear

−→ Use geometry!

Guillaume Garrigos 5/27



Classic convergence results

Assume f to be convex and (xn)n∈N be generated by forward-backward.

function values iterates
argmin f = ∅ o(1) diverge
argmin f 6= ∅ o(n−1) weak convergence
? ? ?
? linear linear

−→ Use geometry!

Guillaume Garrigos 5/27



Known examples

A ∈ L(X ,Y ), y ∈ Y .

f (x) = 1
2‖Ax − y‖2, xn+1 = xn − τA∗(Axn − y)

If R(A) is closed, linear convergence.

Else, strong convergence for iterates, arbitrarily slow.

f (x) = α‖x‖1 + 1
2‖Ax − y‖2, xn+1 = Sατ (xn − τA∗(Axn − y))

In X = RN , the convergence is linear.1

In X = `2(N), ISTA converges strongly2. Linear rates can also be
obtained under some conditions3. In fact not necessary4.

Gap between theory and practice.

1Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
2Daubechies, Defrise, DeMol (2004)
3Bredies, Lorenz (2008)
4End of this talk
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Conditioned and Lojasiewicz functions

Let p ≥ 1 and Ω ⊂ X and arbitrary set.

Definition
We say that f is p-conditioned on Ω if ∃γΩ > 0 such that

∀x ∈ Ω,
γΩ

p
dist (x , argmin f )p ≤ f (x)− inf f .

The exponent p governs the local geometry of f , and then the
rates of convergence. Easy to get.

γΩ governs the constant in the rates. Hard to estimate properly.
"Equivalent" to Lojasiewicz inequality/metric subregularity1.
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Identifying the geometry: Some examples

strongly convex functions are 2-conditioned on X , γX = γ

f (x) = 1
2‖Ax − y‖2

If R(A) is closed, f is 2-conditioned on X , γX = σ∗
min(A∗A).

Else, complicated (see later).

In RN , convex polynomial by parts functions are p-conditioned1 on
sublevel sets, with p = 1 + (d − 1)N , but γ[f≤r ] unknown.
Example: f (x) = α‖x‖1 + 1

2‖Ax − y‖2.
Almost any simple function used in practice: ‖x‖pα, KL divergence,
etc...
semi-algebraic functions are conditioned around minimizers2.
p and γ unknown.
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p and γ unknown.

1Yang, 2009 + Li, 2012
2Bolte, Daniilidis, Lewis, Shiota, 2007
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Identifying the geometry: two rules

Theorem: Sum rule1

Assume that f1 and f2 are respectively p1 and p2-conditioned, up to
linear perturbations, on Ω ⊂ X . Then, under some qualification
condition, f1 + f2 is p-conditioned on Ω with p = max{p1, p2}.

Theorem: Composition with linear operator (closed range)1

Assume that f is p-conditioned and smooth, up to linear perturbations,
on Ω ⊂ X . Then, under some qualification conditions, f ◦ A is
p-conditioned on A−1Ω.

Not always true without QC! See ‖M‖∗ + ‖AM − Y‖2.

1Lewis, Drusvyatskiy (2016) for p = 2; G., Rosasco, Villa (2016) for p ≥ 1.
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Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let (xn)n∈N be generated by the Forward-Backward, and suppose
(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Then xn converges strongly to a minimizer x† of f . Moreover, ∀n ∈ N:

1 if p = 2, linear convergence with ε ∈]0, 1[, C > 0

f (xn+1)− inf f ≤ ε(f (xn)− inf f ) and ‖xn − x†‖ ≤ C
√
ε
n
,

2 if p > 2, sublinear convergence with C1,C2 > 0

f (xn)− inf f ≤ C1n
−p
p−2 and ‖xn − x†‖ ≤ C2n

−1
p−2 .

NB: All the constants depend on (L, λ, p, γf ,Ω, f (x0)− inf f ).
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Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Then p = 2 gives linear rates, p > 2 sublinear rates.

Some remarks on the convergence result:

These rates are optimal (see f (x) = ‖x‖p).
Rates involve a generalized condition number κ ∝ L/γf ,Ω.
For p = 2 there is ε = κ/(κ+ 1).
These results extends to the nonconvex setting.
These results extends to general first-order descent methods.
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On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.

• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
∃(δ, r) ∈]0,+∞[2, f is p-conditioned on Ω := B(x̄ , δ) ∩ [f − inf ≤ r ].

• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
∃(δ, r) ∈]0,+∞[2, f is p-conditioned on Ω := B(x̄ , δ) ∩ [f − inf ≤ r ].
Fejer + descent ⇒ ∃N ∈ N, ∀n ≥ N, xn ∈ Ω ⇒ Local rates.

• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
∀(δ, r) ∈]0,+∞[2, f is p-conditioned on Ω := B(x̄ , δ) ∩ [f − inf ≤ r ].

• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
∀(δ, r) ∈]0,+∞[2, f is p-conditioned on Ω := B(x̄ , δ) ∩ [f − inf ≤ r ].
Fejer + descent ⇒ ∀n ≥ 0, xn ∈ Ω, ⇒ Global rates.

• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.

• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.

If ImA not closed, Haraux and Jendoubi show that no
conditioning hold on B(x̄ , δ).

We prove that conditioning holds on "Sobolev" spaces.

• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.

If ImA not closed, Haraux and Jendoubi show that no
conditioning hold on B(x̄ , δ).
We prove that conditioning holds on "Sobolev" spaces.

• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

If f = g + h with h smooth and g partially smooth + QC, then
∃N ∈ N, ∀n ≥ N, xn ∈M (identification of active manifold)

Guillaume Garrigos 14/27



On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

(Localization) (xn)n∈N ⊂ Ω,
(Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general Ω ⊂ X?

• Clarify the local vs global rates.
• Some functions have nonlocal geometry Ω : f (x) = ‖Ax − y‖2.
• We can restrict to low-dimensional sets.

If f = g + h with h smooth and g partially smooth + QC, then
∃N ∈ N, ∀n ≥ N, xn ∈M (identification of active manifold)
→ conditioning onM is enough, no need for strong convexity.
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Updated results

function values iterates
argmin f = ∅ o(1) diverge
argmin f 6= ∅ o(n−1) weak convergence

geometry, p > 2 O
(
n
−p
p−2

)
O
(
n
−1
p−2

)
geometry, p = 2 linear linear
geometry, 1 < p < 2 superlinear superlinear
geometry, p = 1 finite finite
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We have a spectra covering "almost" all convex functions in finite
dimensions1 .
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Proposition
If linear rates hold on Ω:

(∃ε ∈]0, 1[)(∀x ∈ Ω) dist (FB(x), argmin f ) ≤ εdist (x , argmin f ),

then f is 2-conditioned on Ω.
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geometry, p = 2 linear linear
geometry, 1 < p < 2 superlinear superlinear
geometry, p = 1 finite finite

We have a spectra covering "almost" all convex functions in finite
dimensions1 .
The hypothesis to get linear rates is minimal
Up to now, the infinite dimensional setting is less understood.
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Least squares: f (x) = 1
2‖Ax − y‖2

Assume that R(A) is not closed, and y ∈ domA†.
The FB method becomes xn+1 = xn − λA∗(Axn − y), x0 = 0.

xn converges to x† := A†y . But how fast?
→ Old answer: it depends on the regularity of x†.

In inverse problems, the spaces R(A∗Aµ) play the role of Sobolev in L2.

Example: Sobolev regularity

If X = Y = L2([0, 2π]) and A is the integration operator, then

R(A∗Aµ) = H2µ([0, 2π]).
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Least squares: Convergence analysis

Theorem: Geometry on Sobolev spaces
The least squares f is p-conditioned on each affine space
x† + R(A∗Aµ), with the exponent p = 2 + µ−1.

Fact: if x† ∈ R(A∗Aµ) and x0 = 0, then (xn)n∈N ⊂ x† + R(A∗Aµ).

Theorem: Convergence for Landweber’s algorithm

If x0 = 0, and x† ∈ R(A∗Aµ), then the convergence is sublinear:

f (xn)− inf f = O
(
n−(1+2µ)

)
and ‖xn − x†‖ = O

(
n−µ

)
.

NB: the exponent p = 2 + µ−1 and the rates are tight.

Guillaume Garrigos 18/27



Least squares: what if argmin ‖Ax − y‖2 = ∅ ?

It might be that x† = A†y doesn’t exist...

Typically in learning we look for a function in L2(X × Y, ρ)
But in practice we work in a RKHS X ⊂ L2

Even if f has no minimizers, we still want to estimate f (xn)− inf f → 0
It will depend on how far the solution is from X .
We look at how regular is y † := proj (y , ImA) within ImA ⊂ Y .
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Least squares but no minimizers: Convergence analysis

Theorem: Geometry on Sobolev spaces (w.r.t. data space Y)

The least squares f is "p-conditioned" on each affine space

A−1
(
y † + R(AA∗ν)

)
, ν > 0

with the exponent p = 2 + (ν − 1/2)−1.

Fact: if ν < 1/2 then p < 0 !! f behaves like 1
t|p|

.

Theorem: Convergence for Landweber’s algorithm

If x0 = 0, and y † ∈ R(AA∗ν), then the convergence is sublinear:

f (xn)− inf f = O
(
n−2ν) .
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Updated results

Assume f to be convex and (xn)n∈N be generated by a first-order
descent method.

function values iterates
argmin f = ∅ o(1) diverge

geometry, p < 0 O
(
n
−p
p−2

)
diverge

argmin f 6= ∅ o(n−1) weak convergence

geometry, p > 2 O
(
n
−p
p−2

)
O
(
n
−1
p−2

)
geometry, p = 2 linear linear
geometry, 1 < p < 2 superlinear superlinear
geometry, p = 1 finite finite
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Lasso in Hilbert spaces

Consider the Lasso in `2(N)

f (x) = α‖x‖1 +
1
2
‖Ax − y‖2

How fast do converge ISTA? O(1/n)? linearly?

• linear rates if A is injective on finite supports
• linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists Ω such that (xn)n∈N ⊂ Ω and f is 2-conditioned on Ω. So
ISTA always converge linearly.

Similar result by replacing ‖ · ‖1 with ‖ · ‖1 + ‖ · ‖pp.
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Conclusion
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If you had to remember ONE thing

You have a descent-related (dissipative?) algorithm?
Strong convexity gives you strong convergence and better rates?

Try to use the 2-conditioning:

γ dist (x , argmin f )2 ≤ f (x)− inf f

−→ It should give the same results than strong convexity
−→ It applies to a way more general class of functions (actually super
sharp for linear rates)
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Conclusion/Discussion

Structural results allow a practical identification of geometry.

Geometry sheds a new light on a priori unrelated results.
Quantitative characterization of the geometry in the nonconvex
case is an active topic. E.g.: f (w) =

∑
`(〈xi ,w〉 − yi ).

Descent methods very well understood. Holds for general
first-order descent methods
Recently: application to stochastic gradient methods.
Geometry is a powerful tool not only for rates, but also for
regularization! (see Silvia’s talk)
Can inertial methods benefit from this analysis? Are they
adaptive?
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2 (1st order) b‖∂f (xn+1)‖_ ≤ ‖xn+1 − xn‖

Allows even more structured methods (decomposition by blocs), or
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Recently: application to stochastic gradient methods.
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Thanks for your attention !
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