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Uncertainty on electricity market

• Today, wholesale electricity markets takes the form of
an auction that matches supply and demand

• But, the demand cannot be predicted with absolute certainty.
Day-ahead markets must be augmented with balancing ones

• To reduce CO2 emissions and increase the penetration of
renewables, there are increasing amounts of electricity from
intermittent sources such as wind and solar

• Equilibrium on the market are then set in a stochastic setting
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Multiple equilibrium in a incomplete market

• In Philpott et al. (2013), the authors present a framework for
multistage stochastic equilibria

• They show that equilibrium in risk-neutral market
and equilibrium in complete risk averse markets can be found
as solution of a global optimization problem allowing us to
decompose per agent

• What about risk averse equilibrium in incomplete market ?

• We present a toy problem with agreable properties (strong
concavity of utility) that displays multiple equilibrium

• Classical computing methods fail to find all equilibria
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Ingredients of the problem

Figure 1: Illustration of the toy
problem

• Two time-step market

• One good traded

• Two agents:
producer and consumer

• Finite number of scenario
ω ∈ Ω

• Consumption
on second stage only
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Producer’s welfare

• Step 1: production of x at a marginal cost cx
• Step 2: random production xr at uncertain marginal cost crxr

Wp(ω)︸ ︷︷ ︸
producer’s welfare

= − 1
2cx

2︸ ︷︷ ︸
cost step 1

− 1
2cr (ω)xr (ω)2︸ ︷︷ ︸

cost step 2

• Step 1: no consumption ∅

• Step 2: random consumption y at marginal utility V− ry

Wc(ω)︸ ︷︷ ︸
consumer’s welfare

= V(ω)y(ω)− 1
2r(ω)y(ω)2︸ ︷︷ ︸

consumer’s utility at step 2
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Social planner’s welfare

The welfare of the social planner can be defined by

Wsp(ω)︸ ︷︷ ︸
Social planner’s welfare

= Wp(ω)︸ ︷︷ ︸
Producer’s welfare

+ Wc(ω)︸ ︷︷ ︸
Consumer’s welfare
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Optimization and uncertainty

Figure 2: Aggregating
uncertainty with a risk measure
to obtain real value

To be able to do optimization,
we aggregate uncertainty using:

• the expectation EP: risk neutral

• a risk measure F: risk averse
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Risk neutral social planner problem

Given a probability distribution P on Ω, we can define
a risk neutral social planner problem

RNSP(P): max
x ,xr ,y

EP[Wsp]︸ ︷︷ ︸
expected welfare

s.t. x + xr (ω)︸ ︷︷ ︸
supply

= y(ω)︸ ︷︷ ︸
demand

, ∀ω ∈ Ω
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Risk averse social planner problem

Given a risk measure F, we can define a
risk averse social planner problem

RASP(F): max
x ,xr ,y

F[Wsp]︸ ︷︷ ︸
risk adjusted welfare

s.t. x + xr (ω)︸ ︷︷ ︸
supply

= y(ω)︸ ︷︷ ︸
demand

, ∀ω ∈ Ω
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Coherent risk measures

We study coherent risk measures defined by
(see Artzner et al. (1999))

F
[
Z
]

= min
Q∈Q

EQ
[
Z
]

where Q is a convex set of probability distributions over Ω
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Risk averse social planner problem
with polyhedral risk measure

• If Q is a polyhedron defined by K extreme points (Qk)k∈[[1;K ]],
then the risk measure F is said to be polyhedral and is defined
by

F
[
Z
]

= min
Q1,...,QK

EQk

[
Z
]

• The problem RASP(F) where F is polyhedral can be written
in a more convenient form for optimization

max
θ,x ,xr ,y

θ

s.t. θ ≤ EQk

[
Wsp

]
, k ∈ [[1;K ]]

x + xr (ω) = y(ω) , ∀ω ∈ Ω
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Agent are price takers

Definition
An agent is price taker if she acts as if she has no influence on the
price.

In the remain of the presentation, we consider that agents are price
takers
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Definition risk neutral equilibrium

Definition ((See Arrow and Debreu (1954) or Uzawa (1960)))
Given a probability P on Ω, a risk neutral equilibrium RNEQ(P) is
a set of prices

{
π(ω) , ω ∈ Ω

}
such that there exists a solution

to the system

RNEQ(P):
max
x ,xr

EP
[
Wp + π

(
x + xr

)]
︸ ︷︷ ︸

expected profit

max
y

EP
[
Wc − πy

]︸ ︷︷ ︸
expected utility

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0︸ ︷︷ ︸
market clears

, ∀ω ∈ Ω
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Remark on complementarity constraints

• Complementarity constraints are defined by

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω

• If π > 0 then supply = demand

• If π = 0 then supply ≥ demand
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Definition of risk averse equilibrium

Definition
Given two risk measures Fp and Fc , a risk averse equilibrium
RAEQ(Fp,Fc) is a set of prices

{
π(ω) : ω ∈ Ω

}
such that

there exists a solution to the system

RAEQ(Fp,Fc):
max
x ,xr

Fp
[
Wp + π

(
x + xr

)]
︸ ︷︷ ︸

risk adjusted profit

max
y

Fc
[
Wc − πy

]︸ ︷︷ ︸
risk adjusted consumption

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0︸ ︷︷ ︸
market clears

, ∀ω ∈ Ω

• If Fp = Fc then we write RAEQ(F) 16/35



Consumer is insensitive to the choice of risk measure

Assuming that the risk measure Fc of the consumer is monotonic,
she can optimize scenario per scenario as she has no first stage
decision

max
y

Fc
[
Wc − πy

]︸ ︷︷ ︸
risk adjusted consumption

m
∀ω ∈ Ω , max

y(ω)
Wc(ω)− π(ω)y(ω)︸ ︷︷ ︸
scenario independant
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Risk averse equilibrium with polyhedral risk measure

If the risk measure F is polyhedral, then RAEQ(F) reads

RAEQ: max
θ,x ,xr

θ

s.t. θ ≤ EQk

[
Wp + π(x + xr )

]
, ∀k ∈ [[1;K ]]

max
y(ω)

Wc(ω)− πy(ω) , ∀ω ∈ Ω

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω
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Definition of an Arrow-Debreu security

Definition
An Arrow-Debreu security for node ω ∈ Ω is a contract that
charges a price µ(ω) in the first stage, to receive a payment of 1 in
scenario ω.

Figure 3: Representation of two Arrow-Debreu securities with two
scenarii
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Risk averse equilibrium with risk trading

A risk trading equilibrium is sets of prices {π(ω) , ω ∈ Ω} and
{µ(ω) , ω ∈ Ω} such that there exists a solution to the system:

RAEQ-AD: max
θ,x,xr

θ −
∑
ω∈Ω

µ(ω)a(ω)︸ ︷︷ ︸
value of contracts purchased

s.t. θ ≤ EQk

[
Wp + π(x + xr ) + a

]
, ∀k ∈ [[1; K ]]

max
φ,y

φ−
∑
ω∈Ω

µ(ω)b(ω)︸ ︷︷ ︸
value of contracts purchased

s.t. φ ≤ EQk

[
Wc − πy + b

]
, ∀k ∈ [[1; K ]]

0 ≤ x + xr (ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω

0 ≤ −a(ω)− b(ω)︸ ︷︷ ︸
"supply ≥ demand"

⊥ µ(ω) ≥ 0 , ∀ω ∈ Ω
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Conclusion

Until now, we have seen

• social planner’s problem in risk neutral and risk averse setting
• equilibrium problem in risk neutral and risk averse setting
• risk trading equilibrium problem in risk averse setting

We will study the link between

• risk neutral social planner and equilibrium problem
(RNSP and RNEQ)

• risk averse social planner and risk trading equilibrium
(RASP and RAEQ-AD)
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RNSP(P) is equivalent to RNEQ(P)

Proposition

Let P be a probability measure over Ω.
The elements (x?x?r , y?r ) are optimal solutions to RNSP(P) if and
only if there exist non trivial equilibrium prices π for RNEQ(P)
with associated optimal controls (x?, x?r , y?)

Corollary
If producer’s criterion and consumer’s criterion are strictly concave,
then RNSP(P) admit a unique solution and RNEQ(P) admit a
unique equilibrium.
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Links between optimization problems and equilibrium problems
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RAEQ-AD is equivalent to RASP

We adapt a result of Ralph and Smeers (2015)

Proposition
Suppose given equilibrium prices π and µ such that the finite
valued vector

(
x , xr , y, a,b, θ, ϕ

)
solves RAEQ-AD(F). Then π are

equilibrium price for RNEQ(µ) with optimal value vector (x , xr , y).
Moreover, (x , xr , y) solves RASP(F) where µ is the worst case
probability.
The reverse holds true
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Summing up equivalences

• We have shown two equivalences

RNSP(P)⇔ RNEQ(P) , (risk neutral setting)
RASP(F)⇔ RAEQ-AD(F)︸ ︷︷ ︸

complete market

, (risk averse setting)

that lead to result about uniqueness of equilibrium
and methods of decomposition

• What can we say about RAEQ(F)︸ ︷︷ ︸
incomplete market

?
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Recall on the problem

Figure 4: Illustration of the
toy problem

Recall:
• Two time-step market
• One good traded
• Two agents
• Consumption on second stage only

We focus on:
• Two scenarios ω1 and ω2

• Two prices: π1 and π2

• Five controls: x , x1, x2, y1 and y2

• Two probabilities (p, 1− p) and
(p̄, 1− p̄)

• p = 1
4 , p̄ = 3

4

• prices 0 < π1 < π2 25/35



Computing an equilibrium with GAMS

• GAMS with the solver PATH in the EMP framework
(See Britz et al. (2013), Brook et al. (1988), Ferris and
Munson (2000) and Ferris et al. (2009))

• different starting points defined by a grid 100× 100 over the
square [1.220; 1.255]× [2.05; 2.18]

• We find one equilibrium defined by

π = (π1, π2) = (1.23578; 2.10953)

26/35



Walras’s tâtonnement algorithm (See Uzawa (1960))

Then we compute the equilibrium using a tâtonnement algorithm

Data: MAX-ITER, (π0
1, π

0
2), τ

Result: A couple (π?1, π?2) approximating equilibrium price π]
1 for k from 0 to MAX-ITER do
2 Compute an optimal decision for each player given a price :
3 x , x1, x2 = arg max F

[
Wp + π(x + xr )

]
;

4 y(ω) = arg max F[Wc − πy];
5 Update the price :
6 π1 = π1 − τ max

{
0; y1 − (x + x1)

}
;

7 π2 = π2 − τ max
{
0; y2 − (x + x2)

}
;

8 end
9 return (π1, π2)

Algorithm 1: Walras’ tâtonnement
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Computing equilibria with Walras’s tâtonnement

• Running Walras’s tâtonnement algorithm starting from
(1.25; 2.06), respectively from (1.22; 2.18), with 100 iterations
and a step size of 0.1, we find two new equilibria

π = (1.2256; 2.0698) and π = (1.2478; 2.1564)

• An alternative tatônnement method called FastMarket (see
Facchinei and Kanzow (2007)) find the same equilibria
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Summing up about computing equilibrium

Equilibrium prices Risk adjusted welfares
red (Tâtonnement) (1.2478; 2.1564) (2.113; 0.845)
blue (GAMS) (1.2358; 2.1095) (2.134; 0.821)
green (Tâtonnement) (1.2256; 2.0698) (2.152; 0.798)

2.115 2.120 2.125 2.130 2.135 2.140 2.145 2.150
Producer's welfare

0.80

0.81

0.82

0.83

0.84

Co
ns

um
er

's 
we

lfa
re

Figure 5: Representation of equilibrium in
terms of welfare

• No equilibrium
dominates an
other
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Optimal control of agents with respect to a price π

There are three regimes

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 6: Illustration of the
three regimes

condition x ] x ]i y ]i
xc ≤

Ep̄
[
π
]

c
Ep̄
[
π
]

c
πi
ci

Vi−πi
ri

Ep̄
[
π
]

c ≤ xc ≤
Ep
[
π
]

c xc
πi
ci

Vi−πi
ri

Ep
[
π
]

c ≤ xc
Ep
[
π
]

c
πi
ci

Vi−πi
ri

Table 1: Optimal control for producer and
consumer problems

where xc(π) = 1
2(π1 − π2)

(
π2

2
2c2
− π2

1
2c1

)
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Excess production function

We are now looking for prices (π1, π2) such that the
complementarity constraints are satisfied

zi (π) = x ](π) + x ]i (π)− y ]i (π) = 0︸ ︷︷ ︸
market clears for optimal control

, i ∈ {1, 2}

This excess functions have three regime. In the green and red part
the equation is linear, in the blue part the equation is quadratic.
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Representation of analytical solutions (scenario 1)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 7: Null excess function per scenario manifold for V1 = 4,
V2 = 48

5 , c = 23
2 , c1 = 1, c2 = 7

2 , r1 = 2, r2 = 10.
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Representation of analytical solutions (scenario 2)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 8: Null excess function per scenario manifold for V1 = 4,
V2 = 48

5 , c = 23
2 , c1 = 1, c2 = 7

2 , r1 = 2, r2 = 10.
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Representation of analytical solutions (red equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 9: Null excess function per scenario manifold for V1 = 4,
V2 = 48

5 , c = 23
2 , c1 = 1, c2 = 7

2 , r1 = 2, r2 = 10.
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Representation of analytical solutions (blue equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 10: Null excess function per scenario manifold for V1 = 4,
V2 = 48

5 , c = 23
2 , c1 = 1, c2 = 7

2 , r1 = 2, r2 = 10.
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Representation of analytical solutions (green equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 11: Null excess function per scenario manifold for V1 = 4,
V2 = 48

5 , c = 23
2 , c1 = 1, c2 = 7

2 , r1 = 2, r2 = 10.
32/35



Some interesting remarks

Remark
The PATH solver find the blue equilibrium, while the tatônnements
methods find equilibrium green and red. Interestingly it can be
shown that the blue equilibrium is unstable in the sense that the
dynamical system driven by π′ = z(π) is unstable around the blue
equilibrium.

Remark
There exists a set of non-zero measure of parameters
V1,V2, c, c1, c2, r1, and r2 (albeit small), that have three distinct
equilibrium with the same properties.

Remark
We can show that the blue equilibrium is a convex combination of
red and green equilibrium.
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Stability of equilibriums (red equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 12: Representation of vector field π ′ = z(π) around green
equilibrium
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Stability of equilibriums (blue equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10
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2.14

2.16

2.18

2

Figure 13: Representation of vector field π ′ = z(π) around green
equilibrium
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Stability of equilibriums (green equilibrium)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 14: Representation of vector field π ′ = z(π) around green
equilibrium
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Stability of equilibriums (vector field)

1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255
1

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2

Figure 15: Representation of vector field π ′ = z(π) around green
equilibrium
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Conclusion

In this talk we have

• shown an equivalence between risk averse social planner
problem
and risk trading equilibrium (respectively risk neutral
equivalence)

• given theorems of uniqueness of equilibrium
• shown non uniqueness of equilibrium in risk averse setting

without Arrow-Debreu securities

On going work

• Does the counter example extend with multiple agents and
scenarios ?

• Do we have uniqueness with bounds on the number of
Arrow-Debreu securities exchanged ?
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