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Motivation - problem setup



""One" motivation: M/EEG inverse problem

> sensors: magneto- and electro-encephalogram measurements
during a cognitive experiment

» sources: brain locations
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The M/EEG inverse problem: modelisation
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The M/EEG inverse problem:

Multi-task regression:

> n observations
> ¢ tasks
» p features

Y € R™"*4 observation matrix

v

> X € R™"¥P forward matrix

Y =XB*+E

where
B* € RP*4 s the true source activity matrix
E € R™*9 js an additive white noise.

modelisation



sources

(51 regularization

—
.
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time
Source activity
B € RPx¢

Penalty: Group-Lasso (¢ 1)

P

IBllo1 = >_ 1Bl
j=1

(Bj: 5 row of B)

— we solve:

B € argmin = |[Y — XBJ2 + A B,

BeRpxa 2 ’
a.k.a. Multiple Measurement Vector
(MMV) in signal processing or multi-
task Lasso in ML [Obozinski et al.,
2010]
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Choice of )\ and noise level

» The noise E is assumed white gaussian, with i.i.d. entries
Ei,t ~ N(O, 0'2)
» For optimal performance of the Lasso, A should be

proportional to the noise level (A x o 10%) [Bickel et al.,
2009]

» Yet o is unknown in practice !



Joint estimation of 5 and o

(illustrated on Lasso for simplicity: model is y = X3* + ¢)

Intuitive idea:

> run Lasso with some )\, get 3

> estimate o with residuals: o = ||y — XJ3||/\/n
> relaunch Lasso with A o« o

> etc.

Note: this is the original implementation proposed for the
Scaled-Lasso [Sun and Zhang, 2012]



Concomitant Lasso

Concomitant Lasso [Owen, 2007] (inspired by Huber [1981]):

(B,&) € argmin Hy_ ﬁ”

+ 3 +AlIB
argmin = 18114

also equivalent to the Square-root/Scaled Lasso [Belloni et al.,
2011, Sun and Zhang, 2012].
Note: note that § acts as a penalty over the noise



Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both 3 and ¢):

-y - X8
arg min

+2+A8
argmin T 18111



Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both 5 and o):

arg min 1Y~ 2P X" | o =+ 181,
BERP,o>0  2N0
» 3 update: smooth + separable function,

make CD steps [Friedman et al., 2007].



Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both 5 and o):

oy = XA
rg min

+2+A8
argmin T 18111

» 3 update: smooth + separable function,
make CD steps [Friedman et al., 2007].

» o update: 1D optimization problem, closed-form

o= |ly—XB|/vn.



Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both 5 and o):

oy = XA
rg min

+2+A8
argmin T 18111

» 3 update: smooth + separable function,
make CD steps [Friedman et al., 2007].

» o update: 1D optimization problem, closed-form

o= |ly— X8|l /vn.

But what if we hit y = X 57



Smoothed Concomitant Lasso

Smoothed Concomitant Lasso [Ndiaye et al., 2017]:

- ly = X817
arg min ———

g
+2+x|8
argmin T 5 T AlBIL



Smoothed Concomitant Lasso

Smoothed Concomitant Lasso [Ndiaye et al., 2017]:

-y = X8
arg min ———

g
+2+x|8
argmin T2 5 T AlBIL

Called smoothed following the terminology of Nesterov [2005],
because it amounts to smoothing in the dual:

R 1 2
6 = argmax (y,\0) + o [ £ — "2 o)
0eAx 2 2

for Ax = {0 eR™: HXTQHOO < L8] < Tln}

— state-of-the-art solvers as fast as for the Lasso.
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What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

2
(B,%) € argmin [V = XBlly- + ()
’ BeRPX4 2nq 2n

ZesT, E-%

+A[IBll2,

with |Z||, =Tr ZTAZ and ¥ = ¢ Id.



What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

2
(B,%) € argmin [V = XBlly- + ()
’ BeRPX4 2nq 2n

sest

+A[IBll2,
n-5

with |Z||, =Tr ZTAZ and ¥ = ¢ Id.

In the case ¥ = o Id, we recover the Smoothed Concomitant.



What about more complex noise models?

What can we do if the noise is not white?
Smoothed Generalized Concomitant Lasso (SGCL):

2
(B,%) € argmin [V = XBlly- + ()
’ BeRPX4 2nq 2n

ZesT, E-%

+A[IBll2,

with |Z||, =Tr ZTAZ and ¥ = ¢ Id.

In the case ¥ = o Id, we recover the Smoothed Concomitant.

Note: the noise penalty is now on the sum of the eigenvalues of ¥



Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

3 fixed: smooth + ¢;1-type, BCD works



Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

B fixed: with the current residuals R =Y — XB, the problem is:

1 1
argmin — Tr[R'S7'R] + o Tr(Y) .
n

Tesy [ mxx <ng

Closed-form solution: if U T diag(si,...,s,)U is the SVD of RR':

argmin = U diag(max(g,/51), ..., max(c,/5,))U .
)




Alternate minimization

Algorithm: ALTERNATE MIN. FOR MULTI-TASK SGCL

input : XY, X A\ f,T

init : B=0,, 3 !'=X"1 R=Y

foriter=1,...,7 do
if iter =1 (mod f) then
Y+ V(R X)
for j=1,...,pdo
| Ly =X/ ¥7X;
for j=1,...,pdo
R+ }{'+';X513j
XTZ_IR )\nq
Bj « BST(jT,L—j>
R + }34—-;X513j
return B, X

// closed-form sol.

of minimization in X

// Lipschitz constants

// partial residual update

// coef. update

// residual update

Complexity? OK if we store 71X, and 7' R instead of R.



Main drawbacks

» 3 update OK for M/EEG because n = 300, but O(n?®) SVD
problematic otherwise.

» O(n?) parameters to infer for 3, with ng observations: works
only for ¢ 2 10n.
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Block Homoscedastic model

In our case we record 3 different types of signals:
> electrodes measure the electric potentials
» magnetometers measure the magnetic field
» gradiometers measure the gradient of the magnetic field

= physical natures, different noise levels

Observations are divided into 3 blocks & the partition is known.




Block Homoscedastic model

K groups of observations:

X! y! E!
X = , Y = , B = :
XK YK EX

¥ =diag(o] Idy,, ..., 0% Idn,)
For each block, homoscedastic model with white noise:

Y* = X*B* + o} EF

and entries of E¥ i.i.d. ~ N(0,1)



Smoothed Block Homoscedastic Concomitant
(SBHCL)

Plugging a diagonal X (constant over consecutive blocks) into the
general model yields:

Block Homoscedastic Concomitant:

K k kR |2
YY" — X*B nEo
arg min (H 5 I” e k>+)\||B||2,1
BeRPX4, =1 nqoyg 2n
01,...,0K€Ri{+
o> a1, VEE[K]

— 3 down from @ parameters (hopeless without more
structure) to K.



Solving the SBHCL

» (block) coordinate descent steps remain the same



Solving the SBHCL

» (block) coordinate descent steps remain the same

» computing X' R for the BCD is easier



Solving the SBHCL

» (block) coordinate descent steps remain the same
» computing X' R for the BCD is easier

> o}'s updates are simple and can even be performed at each
B; update (as for the concomitant)



Alternate minimization

Algorithm: ALTERNATE MIN. FOR MULTI-TASK SBHCL
input : X', ... XX YL YK o1, ok, \T
init  : B =0,4 Vk € [K],01 = |Y*||//nkgq, RF =

Vk € [K],Vj € [p], Ln; = | X713
foriter=1,...,7T do

for j=1,...,pdo
for k=1,...,K do
RF « Rk 4+ XfBj // residual update
K kT pk
X R L
B « BST( ) “— Anq)/z b
k=1
for k=1,... K do
RF «+ RF — XJI-CB]‘ // residual update
O < oV m // smart std dev update
V14

return B, oy, ..., 01




In practice

Design:
> (n,p,q) = 300,1000, 100
» X Toeplitz-correlated: Cov(X;, X;) = pl'=7l, p €]0,1]

» 3 blocks with noise in ratio 1, 2, 5



Support recovery
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ROC curves of true support recovery: for SBHCL, MTL and SCL
on all blocks, and the MTL and SCL on the least noisy block. Top:
SNR=1, p = 0.1, Bottom: SNR =1, p =0.9.
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Prediction performance
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Take home message

» more general noise models: possible to estimate full
covariance if there are enough tasks

» if more noise structure is known (e.g., block homoscedastic
model): not more costly than the multi-task Lasso (MTL)

» taking into account multiple noise levels helps: both for
prediction and support identification

» using additional (though noisier) data helps!

Python code is available at https://github.com/mathurinm/SHCL.

This work was funded by ERC Starting Grant SLAB ERC-YStG-676943.
Slides powered by MooseTeX.
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