
Generalized Concomitant Multi-Task
Lasso for sparse multimodal regression

Mathurin Massias
https://mathurinm.github.io

INRIA Saclay

Joint work with:
Olivier Fercoq (Télécom ParisTech)
Alexandre Gramfort (INRIA Saclay)
Joseph Salmon (Télécom ParisTech)

https://mathurinm.github.io

Table of Contents

Motivation - problem setup

Joint estimators of the noise level

General noise model

Block homoscedastic model

"One" motivation: M/EEG inverse problem
I sensors: magneto- and electro-encephalogram measurements

during a cognitive experiment
I sources: brain locations

The M/EEG inverse problem: modelisation

102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)

X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M � GX⇤�E
+ ⇤X⇤�X

, (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)

X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M � GX⇤�E
+ ⇤X⇤�X

, (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

XY

B

−2.5e−13

−1.3e−13

0

1.3e−13

2.5e−13

p ≈ 10000 n ≈
 100

The M/EEG inverse problem: modelisation

Multi-task regression:
I n observations
I q tasks
I p features
I Y ∈ Rn×q observation matrix
I X ∈ Rn×p forward matrix

Y = XB∗ + E

where
B∗ ∈ Rp×q is the true source activity matrix
E ∈ Rn×q is an additive white noise.

`2,1 regularization

time

s
o
u
rc
e
s

Source activity
B̂ ∈ Rp×q

Penalty: Group-Lasso (`2,1)

‖B‖2,1 =
p∑
j=1
‖Bj‖2

(Bj : jth row of B)

→ we solve:

B̂ ∈ arg min
B∈Rp×q

1
2 ‖Y −XB‖2 + λ ‖B‖2,1

a.k.a. Multiple Measurement Vector
(MMV) in signal processing or multi-
task Lasso in ML [Obozinski et al.,
2010]

Table of Contents

Motivation - problem setup

Joint estimators of the noise level

General noise model

Block homoscedastic model

Choice of λ and noise level

I The noise E is assumed white gaussian, with i.i.d. entries
Ei,t ∼ N (0, σ2)

I For optimal performance of the Lasso, λ should be
proportional to the noise level (λ ∝ σ

√
log p
n) [Bickel et al.,

2009]
I Yet σ is unknown in practice !

Joint estimation of β and σ

(illustrated on Lasso for simplicity: model is y = Xβ∗ + ε)

Intuitive idea:
I run Lasso with some λ, get β̂
I estimate σ with residuals: σ = ‖y −Xβ̂‖/

√
n

I relaunch Lasso with λ ∝ σ
I etc.

Note: this is the original implementation proposed for the
Scaled-Lasso [Sun and Zhang, 2012]

Concomitant Lasso

Concomitant Lasso [Owen, 2007] (inspired by Huber [1981]):

(β̂, σ̂) ∈ arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

also equivalent to the Square-root/Scaled Lasso [Belloni et al.,
2011, Sun and Zhang, 2012].
Note: note that σ

2 acts as a penalty over the noise

Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.

Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.

Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.

Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.

But what if we hit y = Xβ?

Smoothed Concomitant Lasso

Smoothed Concomitant Lasso [Ndiaye et al., 2017]:

arg min
β∈Rp,σ>σ

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

Called smoothed following the terminology of Nesterov [2005],
because it amounts to smoothing in the dual:

θ̂ = arg max
θ∈∆X

〈y, λθ〉+ σ

(
1
2 −

nλ2

2 ‖θ‖
2
)

for ∆X =
{
θ ∈ Rn : ‖X>θ‖∞ ≤ 1, ‖θ‖ ≤ 1

λn

}
.

→ state-of-the-art solvers as fast as for the Lasso.

Smoothed Concomitant Lasso

Smoothed Concomitant Lasso [Ndiaye et al., 2017]:

arg min
β∈Rp,σ>σ

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

Called smoothed following the terminology of Nesterov [2005],
because it amounts to smoothing in the dual:

θ̂ = arg max
θ∈∆X

〈y, λθ〉+ σ

(
1
2 −

nλ2

2 ‖θ‖
2
)

for ∆X =
{
θ ∈ Rn : ‖X>θ‖∞ ≤ 1, ‖θ‖ ≤ 1

λn

}
.

→ state-of-the-art solvers as fast as for the Lasso.

Table of Contents

Motivation - problem setup

Joint estimators of the noise level

General noise model

Block homoscedastic model

What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

(B̂, Σ̂) ∈ arg min
B∈Rp×q

Σ∈Sn
++,Σ�Σ

‖Y −XB‖2Σ−1

2nq + Tr(Σ)
2n + λ ‖B‖2,1

with ‖Z‖A = TrZ>AZ and Σ = σ Id.

In the case Σ = σ Id, we recover the Smoothed Concomitant.

Note: the noise penalty is now on the sum of the eigenvalues of Σ

What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

(B̂, Σ̂) ∈ arg min
B∈Rp×q

Σ∈Sn
++,Σ�Σ

‖Y −XB‖2Σ−1

2nq + Tr(Σ)
2n + λ ‖B‖2,1

with ‖Z‖A = TrZ>AZ and Σ = σ Id.

In the case Σ = σ Id, we recover the Smoothed Concomitant.

Note: the noise penalty is now on the sum of the eigenvalues of Σ

What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

(B̂, Σ̂) ∈ arg min
B∈Rp×q

Σ∈Sn
++,Σ�Σ

‖Y −XB‖2Σ−1

2nq + Tr(Σ)
2n + λ ‖B‖2,1

with ‖Z‖A = TrZ>AZ and Σ = σ Id.

In the case Σ = σ Id, we recover the Smoothed Concomitant.

Note: the noise penalty is now on the sum of the eigenvalues of Σ

Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

Σ fixed: smooth + `1-type, BCD works

Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

B fixed: with the current residuals R = Y −XB, the problem is:

arg min
Σ∈Sn

++,Σ�Σ

1
2nq Tr[R>Σ−1R] + 1

2n Tr(Σ) .

Closed-form solution: if U> diag(s1, . . . , sn)U is the SVD of RR>:

arg min
Σ

= U> diag(max(σ ,
√
s1), . . . ,max(σ ,

√
sn))U .

Alternate minimization

Algorithm: Alternate min. for multi-task SGCL
input : X,Y, Σ , λ, f, T
init : B = 0p,q, Σ−1 = Σ−1, R = Y
for iter = 1, . . . , T do

if iter = 1 (mod f) then
Σ← Ψ(R, Σ) // closed-form sol. of minimization in Σ
for j = 1, . . . , p do

Lj = X>j Σ−1Xj // Lipschitz constants

for j = 1, . . . , p do
R← R+XjBj // partial residual update

Bj ← BST
(X>j Σ−1R

Lj
,
λnq

Lj

)
// coef. update

R← R−XjBj // residual update
return B,Σ
Complexity? OK if we store Σ−1X, and Σ−1R instead of R.

Main drawbacks

I Σ update OK for M/EEG because n = 300, but O(n3) SVD
problematic otherwise.

I O(n2) parameters to infer for Σ, with nq observations: works
only for q & 10n.

Table of Contents

Motivation - problem setup

Joint estimators of the noise level

General noise model

Block homoscedastic model

Block Homoscedastic model

In our case we record 3 different types of signals:
I electrodes measure the electric potentials
I magnetometers measure the magnetic field
I gradiometers measure the gradient of the magnetic field

6= physical natures, different noise levels

Observations are divided into 3 blocks & the partition is known.

Block Homoscedastic model

K groups of observations:

X =

X
1

...
XK

 , Y =

Y
1

...
Y K

 , E =

E1

...
EK

Σ∗ = diag(σ∗1 Idn1 , . . . , σ
∗
K IdnK)

For each block, homoscedastic model with white noise:

Y k = XkB∗ + σ∗kEk

and entries of Ek i.i.d. ∼ N (0, 1)

Smoothed Block Homoscedastic Concomitant
(SBHCL)

Plugging a diagonal Σ (constant over consecutive blocks) into the
general model yields:

Block Homoscedastic Concomitant:

arg min
B∈Rp×q ,

σ1,...,σK∈RK
++

σk≥σ k,∀k∈[K]

K∑
k=1

(
‖Y k −XkB‖2

2nqσk
+ nkσk

2n

)
+ λ ‖B‖2,1

→ Σ down from n(n−1)
2 parameters (hopeless without more

structure) to K.

Solving the SBHCL

I (block) coordinate descent steps remain the same
I computing Σ−1R for the BCD is easier

I σk’s updates are simple and can even be performed at each
Bj update (as for the concomitant)

Solving the SBHCL

I (block) coordinate descent steps remain the same
I computing Σ−1R for the BCD is easier
I σk’s updates are simple and can even be performed at each

Bj update (as for the concomitant)

Solving the SBHCL

I (block) coordinate descent steps remain the same
I computing Σ−1R for the BCD is easier
I σk’s updates are simple and can even be performed at each

Bj update (as for the concomitant)

Alternate minimization

Algorithm: Alternate min. for multi-task SBHCL
input : X1, . . . , XK , Y 1, . . . , Y K , σ 1, . . . , σK , λ, T
init : B = 0p,q, ∀k ∈ [K], σk = ‖Y k‖/√nkq,Rk = Y k,

∀k ∈ [K], ∀j ∈ [p], Lk,j = ‖Xk
j ‖22

for iter = 1, . . . , T do
for j = 1, . . . , p do

for k = 1, . . . ,K do
Rk ← Rk +Xk

j Bj // residual update

Bj ← BST
(K∑
k=1

Xk >
j Rk

σk
, λnq

)
/

K∑
k=1

Lk,j
σk

for k = 1, . . . ,K do
Rk ← Rk −Xk

j Bj // residual update

σk ← σ k ∨
‖Rk‖
√
nkq

// smart std dev update

return B, σ1, . . . , σk

In practice

Design:
I (n, p, q) = 300, 1000, 100
I X Toeplitz-correlated: Cov(Xi, Xj) = ρ|i−j|, ρ ∈]0, 1[
I 3 blocks with noise in ratio 1, 2, 5

Support recovery

0.0 0.1 0.2 0.3 0.4 0.5 0.6
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

SBHCL
MTL
MTL (Block 1)
SCL
SCL (Block 1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

SBHCL
MTL
MTL (Block 1)
SCL
SCL (Block 1)

ROC curves of true support recovery: for SBHCL, MTL and SCL
on all blocks, and the MTL and SCL on the least noisy block. Top:

SNR=1, ρ = 0.1, Bottom: SNR = 1, ρ = 0.9.

Prediction performance

10 1 100

/ max

6

4

2

0

lo
g 1

0(
RM

SE
/R

M
SE

or
ac

le
)

SBHCL (block 1)
SBHCL (block 2)
SBHCL (block 3)

SCL (block 1)
SCL (block 2)
SCL (block 3)

10 1 100

/ max

0.0

0.1

0.2

0.3

0.4

0.5

lo
g 1

0(
RM

SE
/R

M
SE

or
ac

le
)

SBHCL (block 1)
SBHCL (block 2)
SBHCL (block 3)

SCL (block 1)
SCL (block 2)
SCL (block 3)

Figure: RMSE normalized by oracle RMSE, per block, for the multi-task
SBHCL and Smooth Concomitant Lasso (SCL), on training (top) and
testing (bottom) set, for various values of λ. The greatest flexibility of
the block homoscedastic model enables the multi-task Smoothed Block
Homoscedastic Concomitant Lasso to reach a lower RMSE on every
block of the test set.

Take home message

I more general noise models: possible to estimate full
covariance if there are enough tasks

I if more noise structure is known (e.g., block homoscedastic
model): not more costly than the multi-task Lasso (MTL)

I taking into account multiple noise levels helps: both for
prediction and support identification

I using additional (though noisier) data helps!

Python code is available at https://github.com/mathurinm/SHCL.

This work was funded by ERC Starting Grant SLAB ERC-YStG-676943.
Slides powered by MooseTeX.

https://github.com/mathurinm/SHCL

References I
G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint

subspace selection for multiple classification problems. Statistics and
Computing, 20(2):231–252, 2010.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and
Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009.

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):
879–898, 2012.

A. B. Owen. A robust hybrid of lasso and ridge regression. Contemporary
Mathematics, 443:59–72, 2007.

P. J. Huber. Robust Statistics. John Wiley & Sons Inc., 1981.
A. Belloni, V. Chernozhukov, and L. Wang. Square-root Lasso: pivotal recovery

of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.
J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate

optimization. Ann. Appl. Stat., 1(2):302–332, 2007.
E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, and J. Salmon. Efficient

smoothed concomitant Lasso estimation for high dimensional regression. In
NCMIP, 2017.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005.

	Motivation - problem setup
	Joint estimators of the noise level
	General noise model
	Block homoscedastic model

