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"One" motivation: M/EEG inverse problem
I sensors: magneto- and electro-encephalogram measurements

during a cognitive experiment
I sources: brain locations



The M/EEG inverse problem: modelisation

102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)

X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M � GX⇤�E
+ ⇤X⇤�X

, (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.
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The M/EEG inverse problem: modelisation

Multi-task regression:
I n observations
I q tasks
I p features
I Y ∈ Rn×q observation matrix
I X ∈ Rn×p forward matrix

Y = XB∗ + E

where
B∗ ∈ Rp×q is the true source activity matrix
E ∈ Rn×q is an additive white noise.



`2,1 regularization

time

s
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s

Source activity
B̂ ∈ Rp×q

Penalty: Group-Lasso (`2,1)

‖B‖2,1 =
p∑
j=1
‖Bj‖2

(Bj : jth row of B)

→ we solve:

B̂ ∈ arg min
B∈Rp×q

1
2 ‖Y −XB‖2 + λ ‖B‖2,1

a.k.a. Multiple Measurement Vector
(MMV) in signal processing or multi-
task Lasso in ML [Obozinski et al.,
2010]
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Choice of λ and noise level

I The noise E is assumed white gaussian, with i.i.d. entries
Ei,t ∼ N (0, σ2)

I For optimal performance of the Lasso, λ should be
proportional to the noise level (λ ∝ σ

√
log p
n ) [Bickel et al.,

2009]
I Yet σ is unknown in practice !



Joint estimation of β and σ

(illustrated on Lasso for simplicity: model is y = Xβ∗ + ε)

Intuitive idea:
I run Lasso with some λ, get β̂
I estimate σ with residuals: σ = ‖y −Xβ̂‖/

√
n

I relaunch Lasso with λ ∝ σ
I etc.

Note: this is the original implementation proposed for the
Scaled-Lasso [Sun and Zhang, 2012]



Concomitant Lasso

Concomitant Lasso [Owen, 2007] (inspired by Huber [1981]):

(β̂, σ̂) ∈ arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

also equivalent to the Square-root/Scaled Lasso [Belloni et al.,
2011, Sun and Zhang, 2012].
Note: note that σ

2 acts as a penalty over the noise



Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.
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Solving the Concomitant Lasso

A jointly convex formulation (w.r.t. both β and σ):

arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

I β update: smooth + separable function,
make CD steps [Friedman et al., 2007].

I σ update: 1D optimization problem, closed-form
σ = ‖y −Xβ‖ /

√
n.

But what if we hit y = Xβ?



Smoothed Concomitant Lasso

Smoothed Concomitant Lasso [Ndiaye et al., 2017]:

arg min
β∈Rp,σ>σ

‖y −Xβ‖2

2nσ + σ

2 + λ ‖β‖1

Called smoothed following the terminology of Nesterov [2005],
because it amounts to smoothing in the dual:

θ̂ = arg max
θ∈∆X

〈y, λθ〉+ σ

(
1
2 −

nλ2

2 ‖θ‖
2
)

for ∆X =
{
θ ∈ Rn : ‖X>θ‖∞ ≤ 1, ‖θ‖ ≤ 1

λn

}
.

→ state-of-the-art solvers as fast as for the Lasso.
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What about more complex noise models?

What can we do if the noise is not white?

Smoothed Generalized Concomitant Lasso (SGCL):

(B̂, Σ̂) ∈ arg min
B∈Rp×q

Σ∈Sn
++,Σ�Σ

‖Y −XB‖2Σ−1

2nq + Tr(Σ)
2n + λ ‖B‖2,1

with ‖Z‖A = TrZ>AZ and Σ = σ Id.

In the case Σ = σ Id, we recover the Smoothed Concomitant.

Note: the noise penalty is now on the sum of the eigenvalues of Σ
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Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

Σ fixed: smooth + `1-type, BCD works



Solving the SGCL

Jointly convex formulation, we can still use alternate minimization
and use the duality gap as stopping criterion.

B fixed: with the current residuals R = Y −XB, the problem is:

arg min
Σ∈Sn

++,Σ�Σ

1
2nq Tr[R>Σ−1R] + 1

2n Tr(Σ) .

Closed-form solution: if U> diag(s1, . . . , sn)U is the SVD of RR>:

arg min
Σ

= U> diag(max(σ ,
√
s1), . . . ,max(σ ,

√
sn))U .



Alternate minimization

Algorithm: Alternate min. for multi-task SGCL
input : X,Y, Σ , λ, f, T
init : B = 0p,q, Σ−1 = Σ−1, R = Y
for iter = 1, . . . , T do

if iter = 1 (mod f) then
Σ← Ψ(R, Σ) // closed-form sol. of minimization in Σ
for j = 1, . . . , p do

Lj = X>j Σ−1Xj // Lipschitz constants

for j = 1, . . . , p do
R← R+XjBj // partial residual update

Bj ← BST
(X>j Σ−1R

Lj
,
λnq

Lj

)
// coef. update

R← R−XjBj // residual update
return B,Σ
Complexity? OK if we store Σ−1X, and Σ−1R instead of R.



Main drawbacks

I Σ update OK for M/EEG because n = 300, but O(n3) SVD
problematic otherwise.

I O(n2) parameters to infer for Σ, with nq observations: works
only for q & 10n.



Table of Contents

Motivation - problem setup

Joint estimators of the noise level

General noise model

Block homoscedastic model



Block Homoscedastic model

In our case we record 3 different types of signals:
I electrodes measure the electric potentials
I magnetometers measure the magnetic field
I gradiometers measure the gradient of the magnetic field

6= physical natures, different noise levels

Observations are divided into 3 blocks & the partition is known.



Block Homoscedastic model

K groups of observations:

X =

X
1

...
XK

 , Y =

Y
1

...
Y K

 , E =

E1

...
EK



Σ∗ = diag(σ∗1 Idn1 , . . . , σ
∗
K IdnK )

For each block, homoscedastic model with white noise:

Y k = XkB∗ + σ∗kEk

and entries of Ek i.i.d. ∼ N (0, 1)



Smoothed Block Homoscedastic Concomitant
(SBHCL)

Plugging a diagonal Σ (constant over consecutive blocks) into the
general model yields:

Block Homoscedastic Concomitant:

arg min
B∈Rp×q ,

σ1,...,σK∈RK
++

σk≥σ k,∀k∈[K]

K∑
k=1

(
‖Y k −XkB‖2

2nqσk
+ nkσk

2n

)
+ λ ‖B‖2,1

→ Σ down from n(n−1)
2 parameters (hopeless without more

structure) to K.



Solving the SBHCL

I (block) coordinate descent steps remain the same
I computing Σ−1R for the BCD is easier

I σk’s updates are simple and can even be performed at each
Bj update (as for the concomitant)
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Alternate minimization

Algorithm: Alternate min. for multi-task SBHCL
input : X1, . . . , XK , Y 1, . . . , Y K , σ 1, . . . , σK , λ, T
init : B = 0p,q, ∀k ∈ [K], σk = ‖Y k‖/√nkq,Rk = Y k,

∀k ∈ [K], ∀j ∈ [p], Lk,j = ‖Xk
j ‖22

for iter = 1, . . . , T do
for j = 1, . . . , p do

for k = 1, . . . ,K do
Rk ← Rk +Xk

j Bj // residual update

Bj ← BST
( K∑
k=1

Xk >
j Rk

σk
, λnq

)
/

K∑
k=1

Lk,j
σk

for k = 1, . . . ,K do
Rk ← Rk −Xk

j Bj // residual update

σk ← σ k ∨
‖Rk‖
√
nkq

// smart std dev update

return B, σ1, . . . , σk



In practice

Design:
I (n, p, q) = 300, 1000, 100
I X Toeplitz-correlated: Cov(Xi, Xj) = ρ|i−j|, ρ ∈]0, 1[
I 3 blocks with noise in ratio 1, 2, 5



Support recovery
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ROC curves of true support recovery: for SBHCL, MTL and SCL
on all blocks, and the MTL and SCL on the least noisy block. Top:

SNR=1, ρ = 0.1, Bottom: SNR = 1, ρ = 0.9.



Prediction performance
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Figure: RMSE normalized by oracle RMSE, per block, for the multi-task
SBHCL and Smooth Concomitant Lasso (SCL), on training (top) and
testing (bottom) set, for various values of λ. The greatest flexibility of
the block homoscedastic model enables the multi-task Smoothed Block
Homoscedastic Concomitant Lasso to reach a lower RMSE on every
block of the test set.



Take home message

I more general noise models: possible to estimate full
covariance if there are enough tasks

I if more noise structure is known (e.g., block homoscedastic
model): not more costly than the multi-task Lasso (MTL)

I taking into account multiple noise levels helps: both for
prediction and support identification

I using additional (though noisier) data helps!

Python code is available at https://github.com/mathurinm/SHCL.

This work was funded by ERC Starting Grant SLAB ERC-YStG-676943.
Slides powered by MooseTeX.

https://github.com/mathurinm/SHCL


References I
G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint

subspace selection for multiple classification problems. Statistics and
Computing, 20(2):231–252, 2010.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and
Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009.

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):
879–898, 2012.

A. B. Owen. A robust hybrid of lasso and ridge regression. Contemporary
Mathematics, 443:59–72, 2007.

P. J. Huber. Robust Statistics. John Wiley & Sons Inc., 1981.
A. Belloni, V. Chernozhukov, and L. Wang. Square-root Lasso: pivotal recovery

of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.
J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate

optimization. Ann. Appl. Stat., 1(2):302–332, 2007.
E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, and J. Salmon. Efficient

smoothed concomitant Lasso estimation for high dimensional regression. In
NCMIP, 2017.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005.


	Motivation - problem setup
	Joint estimators of the noise level
	General noise model
	Block homoscedastic model

