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Introduction

What is an in�nite dimensional inverse problem?

Let u ∈ B(Ω), denote a function from a vector space B(Ω), Ω ⊆ Rd.
We are given a �nite number m of corrupted linear measurements:

y = P (A∗u),

where

A∗ : B(Ω)→ Rm is de�ned by

(A∗u)i = 〈ai, u〉, ai ∈ B∗(Ω)

P : Rm → Rm is a perturbation operator (e.g. quantization, additive noise,...).

Problem

How can we retrieve an approximation û of u knowing y and A∗?
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Introduction

Example 1: Photography

On a conventional camera:
ai(·) = h(· − xi)

where h is a smooth function localized around 0 and xi denotes a pixel center.
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Introduction

Example 2: Tomography

In tomography ai allows measuring line integrals.
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Introduction

Example 3: MRI

In MRI the functions ai are complex exponentials.
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Introduction

A critical issue

Regularization is crucial since B(Ω) is in�nite and y ∈ Rm is �nite.

Tikhonov regularization (before 1943)

We could solve:

inf
u∈B(Ω)

1

2
‖A∗u− y‖22 + ‖Lu‖2L2(Ω),

where L : B(Ω)→ L2(Ω) is a linear operator (e.g. the derivative)

4 Solutions given by linear systems.

4 Sometimes solution of a �nite dimensional problem yields an in�nite dimensional
solution (RKHS).

5 Typically restricts B(Ω) to Hilbert spaces such as Wn,2.

5 Solutions live in ran(A) for L = Id.

6 / 38
N



Introduction

A critical issue

Regularization is crucial since B(Ω) is in�nite and y ∈ Rm is �nite.

Tikhonov regularization (before 1943)

We could solve:

inf
u∈B(Ω)

1

2
‖A∗u− y‖22 + ‖Lu‖2L2(Ω),

where L : B(Ω)→ L2(Ω) is a linear operator (e.g. the derivative)

4 Solutions given by linear systems.

4 Sometimes solution of a �nite dimensional problem yields an in�nite dimensional
solution (RKHS).

5 Typically restricts B(Ω) to Hilbert spaces such as Wn,2.

5 Solutions live in ran(A) for L = Id.

6 / 38
N



Introduction

Total variation regularization - Analysis formulation (before 1973)

inf
u∈B(Ω)

fy(A∗u) + ‖Lu‖TV , (P)

L : B(Ω)→M(Ω) is a linear operator (e.g. the derivative).

M(Ω) is the space of Radon measures.

fy : Rm → R ∪ {+∞} is a data �tting term.

Total variation regularization - Synthesis formulation (before 1973)

inf
µ∈M(Ω)

fy(A∗Dµ) + ‖µ‖TV ,

where D :M(Ω)→ B(Ω) is a linear operator called dictionary.

The estimate of u is given by û = Dµ̂.
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Introduction

Examples of functions fy
If P = Id (i.e. no perturbation):

fy(x) = ι{y}(x) =

{
0 if x = y,

+∞ otherwise.

If P adds Gaussian noise of covariance matrix C:

fy(x) =
1

2
‖C−1(x− y)‖22

If P is a quantization operator of step ∆:

fy(x) =

{
0 if ‖x− y‖∞ ≤ ∆,

+∞ otherwise.

All of the above can be replaced by fy(|x|), e.g. phase retrieval.
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Introduction

A few milestones

Jon F Claerbout and Francis Muir.

Robust modeling with erratic data.
Geophysics, 38(5):826�844, 1973.

Leonid I Rudin, Stanley Osher, and Emad Fatemi.

Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60(1-4):259�268, 1992.

Robert Tibshirani.

Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), pages 267�288, 1996.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders.

Atomic decomposition by basis pursuit.
SIAM review, 43(1):129�159, 2001.

Emmanuel J Candès, Justin Romberg, and Terence Tao.

Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information.
IEEE Transactions on information theory, 52(2):489�509, 2006.

Successful approach in a wide range of practical applications...

But...

A lot still has to be understood.
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Introduction

An early and forgotten result

Theorem 1.

Asssume that Ω = [0, 1] and that L = Dn is a di�erential operator.

Assume that fy = ιC , where C is a nonempty closed convex set of Rm.

Then the extreme points of the solution set Û of (P) satisfy:

Lû =

p∑
i=1

αiδxk , xk ∈ Ω where p ≤ m (1)

Hence

û = uK +

p∑
i=1

αiL
+δxk where L+

is an �inverse� of L and uK ∈ ker(L). (2)
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Introduction

A more recent result

Michael Unser, Julien Fageot, and John Paul Ward.

Splines are universal solutions of linear inverse problems with generalized-tv regularization.
SIAM review, to appear, 2017.

De�nition 2 (Spline admissible operators).

L is shift invariant.

L admits a green function ψL (of slow growth): LψL = δ.

The (growth-restricted) null-space of L has �nite dimension.

The native space of L is de�ned by

B(Ω) = {u of slow growth, ‖Lu‖TV < +∞}.

Slow growth means esssup
x∈Ω

|f(x)|(1 + ‖x‖)−n0 < +∞ for a given integer n0.
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Introduction

A more recent result

Michael Unser, Julien Fageot, and John Paul Ward.

Splines are universal solutions of linear inverse problems with generalized-tv regularization.
SIAM review, to appear, 2017.

Theorem 3.

Asssume that Ω = Rd and that L is spline admissible.

Assume that fy = ιC , where C is a nonempty closed convex set of Rm.

Then the extreme points of Û are of the form:

û = uK +

p∑
i=1

αiψL(· − xk) with p ≤ m and uK ∈ ker(L).

Many other subtelties in both papers...
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Introduction

Part I - Representation of solutions

1 Can we relax the hypotheses on the domain Ω?

2 Can we relax the hypotheses on the operator L and on the space B?
3 Can we relax the hypotheses on the function fb?

Part II - Numerical computation

1 Can we use these results to design new numerical solvers?
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Part I : On the solutions structure
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On the solutions structure

Assumptions on Ω

We assume that Ω is a separable, locally compact topological space.
This covers open subsets Ω ⊆ Rd or the torus Td = (R\N)d.

Assumptions on L and B
The operator L is continuous on B.
ran(L) is closed and there exists a closed subspace W such that ranL⊕W =M.

ker(L) is closed and there exists a closed subspace V such that kerL⊕ V = B.

Implies existence a continuous pseudo-inverse denoted L+ :M→ V .
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On the solutions structure

Assumptions on fy

We only require existence of at least one minimizer in problem (P):

inf
u∈B(Ω)

fy(A∗u) + ‖Lu‖TV , (P)

In particular, fy can be nonconvex.

Assumptions on ai

The functionals ai ∈ B∗(Ω) should additionally satisfy

ρi = (L+)∗ai ∈ C0(Ω).
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On the solutions structure

Theorem (Flinth, W. 2017)

Under the previous assumptions, the solution set contains elements of the form:

û = uK +

p∑
i=1

αiL
+δxk with p ≤ m̄,

where uK ∈ ker(L) and

m̄ := m− dim(A∗ ker(L)).
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On the solutions structure

Example 1: Ω ⊆ Rd and L = Id

In that case L+ = Id and ker(L) = {0}.
Hence, the theorem states that there always exists m-sparse solutions.

This setting is the one of super-resolution and of synthesis based priors.

Emmanuel J Candès and Carlos Fernandez-Granda.

Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906�956, 2014.

Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht.

Compressed sensing o� the grid.
IEEE transactions on information theory, 59(11):7465�7490, 2013.
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On the solutions structure

Example 2: Ω = [0, 1] and L = D

In that case

(L+µ)(s) = µ([0, s])−
∫ 1

0

µ([0, t]) dt

and
ker(L) = span(11).

⇒ There always exists solutions with at most m jumps.
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On the solutions structure

Example 3: Ω = R2 and L = ∆∆

In that case, ψL(x) = ‖x‖2 log(‖x‖) and

û = uK +

m∑
i=1

αiψL(· − xi),

is a polyharmonic spline, with uK a polynomial of degree 1.

Figure : Polyharmonic splines are used for data interpolation
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Example 3: Ω = R2 and L = ∆∆

In that case, ψL(x) = ‖x‖2 log(‖x‖) and

û = uK +

m∑
i=1

αiψL(· − xi),

is a polyharmonic spline, with uK a polynomial of degree 1.

The traditional approach

Usually, polyharmonic splines are appearing in the frame of RKHS.

inf
u∈H2(R2)

1

2

m∑
i=1

(u(xi)− yi)2 + ‖∆u‖2L2(Rd).
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On the solutions structure

Example 4: Ω = [0, 1]2 and L = ∇
This operator is out of the theorem's scope!
For instance it cannot explain the stair-casing e�ect.
Problem: L maps BV (Ω) to a set of vectorial measures.

Figure : The staircase effect with total variation minimization
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On the solutions structure

Main ideas - Killing fy

Let ũ denote a solution of (P). Consider the following problem:

min
u∈B,A∗u=A∗ũ

‖Lu‖TV

Any solution û of this problem is also a solution of (P) since:
fy(A∗û) = fy(A∗ũ)

‖Lû‖TV = ‖Lũ‖TV (otherwise, ũ would not be a solution).

Hence we only need to prove the result for the linearly constrained problem:

min
u∈B,A∗u=y

‖Lu‖TV
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On the solutions structure

Main ideas - Killing L

Any u ∈ B can be decomposed as

u = uK + L+µ with µ ∈M and uK ∈ ker(L)

Hence:
min

u∈B,A∗u=y
‖Lu‖TV = min

uK∈ker(L)
µ∈M

A∗(uK+L+µ)=y

‖µ‖TV .

Now, set X = A∗ ker(L) and decompose y = yX + yX⊥ :

min
uK∈ker(L)
µ∈M

A∗(uK+L+µ)=y

‖µ‖TV = min
µ∈M

A∗(L+µ)=y
X⊥

‖µ‖TV = min
µ∈M

Π
X⊥ (A∗(L+µ))=y

X⊥

‖µ‖TV

Setting H = ΠX⊥(A∗(L+)), we get:

min
µ∈M

Hµ=y
X⊥

‖µ‖TV (3)

with dim(ran(H)) = m− dim(A∗ ker(L)) = m̄.
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On the solutions structure

Main ideas - The standard `1 trick

min
µ∈M,Hµ=y

X⊥
‖µ‖TV

The extreme points of the solution set are of the form:

µ̂ =

p∑
i=1

αiδxi with p ≤ m̄.
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Part II : Computing the solutions
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Computing the solutions

Assumptions

fy is convex lower semi-continuous.

ker(L) = span(λ1, . . . , λr) with r < +∞.

ran(L) =M.

We are looking for a solution of type:

û =
r∑
i=1

ciλi + L+

(
p∑
i=1

diδxj

)
.

Dual of problem (P)
Under the previous assumptions:

min
u∈B

J(u) = sup
q∈Rm

Aq∈ranL∗

‖∑m
i=1 qiρi‖∞≤1

−f∗y (q).

Let (û, q̂) denote a primal-dual pair, then:

Aq̂ ∈ L∗∂(‖ · ‖TV )(Lû) and − q̂ ∈ ∂fy(A∗û). (4)
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Let (û, q̂) denote a primal-dual pair, then:
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Computing the solutions

What does the dual tell us?

Let (û, q̂) denote a primal-dual pair of the dual and

I(q̂) =

{
x ∈ Ω,

∣∣∣∣∣
m∑
i=1

qiρi

∣∣∣∣∣ (x) = 1

}
.

Then
supp(Lû) ⊆ I(q̂).

In particular, if I(q̂) = {x1, . . . , xp}, then û can be written as:

û = uK +

p∑
k=1

dkL
+δxk

with uK ∈ kerL and (dk) ∈ Rp.

If problem (P) admits a unique solution û, then I(q̂) = supp(Lû) and p ≤ m̄.
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Computing the solutions

Retrieving the primal solution (for discrete I(q̂))

Let (λi)1≤i≤r denote a basis of kerL and de�ne the matrix

M =
[
(〈ai, λk〉)1≤i≤m,1≤k≤r, (ρi(xj))1≤i≤m,1≤j≤p

]
Then (P) becomes a �nite dimensional convex program:

min
c∈Rr,d∈Rp

fy

(
M

[
c
d

])
+ ‖d‖1. (5)

Summary

1 Solve the dual problem to �nd q̂.

2 Determine I(q̂) =
{
x ∈ Ω, |

∑m
i=1 q̂iρi(x)| = 1

}
.

3 If I(q̂) is �nitely supported, solve the primal (5).
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Computing the solutions

The devil in the dual

sup
q∈Rm

Aq∈ranL∗

‖∑m
i=1 qiρi‖∞≤1

−f∗y (q).

How can we handle the in�nite dimensional constraints

Aq ∈ ranL∗ and

∥∥∥∥∥
m∑
i=1

qiρi

∥∥∥∥∥
∞

≤ 1?

An easy one

Aq ∈ ranL∗ ⇔ Aq ∈ ker(L)⊥ ⇔
m∑
i=1

qi〈ai, λj〉 = 0, ∀1 ≤ j ≤ r

Hence, the constraint set is simply r linear constraints.
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Computing the solutions

Trigonometric polynomials

Assume that Ω = T.
Assume that (ρi)1≤i≤m are trigonometric polynomials:

ρi(t) =

K∑
j=−K

γi,j exp(−2ιπjt),

with γj,i = −γ∗−j,i.

The dual can be expressed as a semi-de�nite program (if fy is semi-de�nite rep-
resentable).

This setting is the one of super-resolution and of synthesis based priors.

Bogdan Dumitrescu.

Positive trigonometric polynomials and signal processing applications, volume 103.
Springer, 2007.
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Computing the solutions

Piecewise linear functions on polyhedral pieces

Under this assumption ‖
∑m
i=1 qiρi‖∞ is necessarily attained on the vertices vj .

Letting R = (ρi(vj))1≤i≤m,j∈J , we get:∥∥∥∥∥
m∑
i=1

qiρi

∥∥∥∥∥
∞

≤ 1⇔ ‖Rq‖∞ ≤ 1.

(a) 1D (b) 2D
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Computing the solutions

A serious issue?

For piecewise linear functions (ρi), I(q̂) is usually not discrete.

Proposition (Flinth, W. 2017)

There exists at least one solution supported on the vertices vj .

Solution given by:

M =
[
(〈ai, λk〉)1≤i≤m,1≤k≤r, (ρi(vj))1≤i≤m,j∈J

]
min

c∈Rr,d∈Rp
fy

(
M

[
c
d

])
+ ‖d‖1.
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Computing the solutions

New insight on the standard approach

We just showed the equivalence:

Discretizing by �xing possible locations
⇔

Using piecewise linear approximations of (ρi)

Non uniqueness of the solutions

What do we actually measure?
0-th and 1st order moments of Lû on a polyhedral piece.
A large amount of measures satisfy those moment conditions.
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Computing the solutions

Sparsifying the solution

We can merge adjacent Dirac masses to a single one if they have the same sign.

Figure : Di�erent solutions
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Computing the solutions

L = Id and Ω = [0, 1]

Set (ai)1≤i≤m as random piecewise linear functions.
Set y = A∗u0 (no perturbation) and solve the constrained problem:

min
A∗u=y

‖u‖TV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Signal u0

Recovered

Sparsi�ed

Figure : True measure u0 and the recovered ones with m = 12.
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Computing the solutions

L = Id and Ω = [0, 1]

Set (ai)1≤i≤m as random piecewise linear functions.
Set y = A∗u0 + η with η Bernoulli-Gaussian noise:

min
u∈BV (]0,1[)

‖Du‖TV + α‖A∗u− b‖1, (6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1
Signal u0

Recovered

Sparsi�ed

Figure : Exact recovery despite noise (42 measurements, 3 jumps)
36 / 38

N



Computing the solutions

L = Id and Ω = [0, 1]2

Set (ai)1≤i≤m as random piecewise linear functions.
Set y = A∗u0 + η with η Gaussian noise:

min
u∈M([0,1]2)

‖u‖TV + α/2‖A∗u− b‖22, (7)

0
0.5

1
0

0.5

1

−1

0

1

0
0.5

1

0
0.5

1

−1

0

1

0
0.5

1

0
0.5

1

−1

0

1

Figure : True, recovered and sparsi�ed solutions.
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The �nal word

Theoretical insights

Generalized Fisher-Jerome by:

Arbitrary data �tting terms fy .

No need for �nite dimensional kernels

Bounded and unbounded domains treated in a uni�ed manner.

Numerical insights

Exact solutions can be computed without discretization.

New view on the standard approach.

New sparsifying procedure with theoretical guarantees.

Outlook

Extend the theory to more general operators (e.g. BV (R2)).

Evaluate trade-o� accuracy/complexity.

Derive compressed sensing type guarantees.
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