

Solving infinite dimensional inverse problems.

Axel Flinth & Pierre Weiss

27/06/2017

Toulouse - Berlin

What is an infinite dimensional inverse problem?

Let $u \in \mathcal{B}(\Omega)$, denote a function from a vector space $\mathcal{B}(\Omega)$, $\Omega \subseteq \mathbb{R}^d$. We are given a finite number m of corrupted linear measurements:

$$y = P(A^*u),$$

where

• $A^*: \mathcal{B}(\Omega) \to \mathbb{R}^m$ is defined by

$$(A^*u)_i = \langle a_i, u \rangle, a_i \in \mathcal{B}^*(\Omega)$$

• $P: \mathbb{R}^m \to \mathbb{R}^m$ is a perturbation operator (e.g. quantization, additive noise,...).

Problem

How can we retrieve an approximation \hat{u} of u knowing y and A^* ?

Example 1: Photography

On a conventional camera:

$$a_i(\cdot) = h(\cdot - x_i)$$

where h is a smooth function localized around 0 and x_i denotes a pixel center.

$$y_m = \left\langle \begin{array}{c} & & & \\ & & & \\ & & & \end{array} \right\rangle$$

Example 2: Tomography

In tomography a_i allows measuring line integrals.

$$y_m = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$

Example 3: MRI

In MRI the functions a_i are complex exponentials.

$$y_m = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$

A critical issue

Regularization is crucial since $\mathcal{B}(\Omega)$ is infinite and $y \in \mathbb{R}^m$ is finite.

A critical issue

Regularization is crucial since $\mathcal{B}(\Omega)$ is infinite and $y \in \mathbb{R}^m$ is finite.

Tikhonov regularization (before 1943)

We could solve:

$$\inf_{u \in \mathcal{B}(\Omega)} \frac{1}{2} ||A^*u - y||_2^2 + ||Lu||_{L^2(\Omega)}^2,$$

where $L: \mathcal{B}(\Omega) \to L^2(\Omega)$ is a linear operator (e.g. the derivative)

- ✓ Solutions given by linear systems.
- Sometimes solution of a finite dimensional problem yields an infinite dimensional solution (RKHS).
- \times Typically restricts $\mathcal{B}(\Omega)$ to Hilbert spaces such as $W^{n,2}$.
- \times Solutions live in ran(A) for L = Id.

Total variation regularization - Analysis formulation (before 1973)

$$\inf_{u \in \mathcal{B}(\Omega)} f_y(A^*u) + ||Lu||_{TV},\tag{P}$$

- $L: \mathcal{B}(\Omega) \to \mathcal{M}(\Omega)$ is a linear operator (e.g. the derivative).
- $\mathcal{M}(\Omega)$ is the space of Radon measures.
- $f_y: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a data fitting term.

Total variation regularization - Synthesis formulation (before 1973)

$$\inf_{\mu \in \mathcal{M}(\Omega)} f_y(A^*D\mu) + \|\mu\|_{TV},$$

where $D: \mathcal{M}(\Omega) \to \mathcal{B}(\Omega)$ is a linear operator called dictionary.

The estimate of u is given by $\hat{u} = D\hat{\mu}$.

Examples of functions f_y

• If P = Id (i.e. no perturbation):

$$f_y(x) = \iota_{\{y\}}(x) = \begin{cases} 0 & \text{if } x = y, \\ +\infty & \text{otherwise.} \end{cases}$$

• If P adds Gaussian noise of covariance matrix C:

$$f_y(x) = \frac{1}{2} ||C^{-1}(x-y)||_2^2$$

• If P is a quantization operator of step Δ :

$$f_y(x) = \begin{cases} 0 & \text{if } ||x - y||_{\infty} \le \Delta, \\ +\infty & \text{otherwise.} \end{cases}$$

• All of the above can be replaced by $f_y(|x|)$, e.g. phase retrieval.

A few milestones

Scott Shaobing Chen, David L Donoho, and Michael A Saunders.
Atomic decomposition by basis pursuit.
SIAM review, 48(1):129-159, 2001.

Emmanuel J Candès, Justin Romberg, and Terence Tao.

Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.

IEEE Transactions on information theory, 52(2):489-509, 2006.

Successful approach in a wide range of practical applications...

A few milestones

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259-268, 1992.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267-288, 1996.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders.
Atomic decomposition by basis pursuit.
SIAM review, 43(1):129-159, 2001.

.AM leview, 45(1).125-155, 2001.

Emmanuel J Candés, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.

IEEE Transactions on information theory, 52(2):489-509, 2006.

Successful approach in a wide range of practical applications...

But...

A lot still has to be understood.

An early and forgotten result

[HTML] Spline solutions to L1 extremal problems in one and several variables SD Fisher, JW Jerome - Journal of Approximation Theory, 1975 - Elsevier

Theorem 1.

Assume that $\Omega = [0, 1]$ and that $L = D^n$ is a differential operator. Assume that $f_y = \iota_C$, where C is a nonempty closed convex set of \mathbb{R}^m .

Then the extreme points of the solution set \hat{U} of (\mathcal{P}) satisfy:

$$L\hat{u} = \sum_{i=1}^{p} \alpha_i \delta_{x_k}, x_k \in \Omega \text{ where } p \le m$$
 (1)

Hence

$$\hat{u} = u_K + \sum_{i=1}^{P} \alpha_i L^+ \delta_{x_k}$$
 where L^+ is an "inverse" of L and $u_K \in \ker(L)$. (2)

A more recent result

Michael Unser, Julien Fageot, and John Paul Ward.

Splines are universal solutions of linear inverse problems with generalized-tv regularization.

SIAM review, to appear, 2017.

Definition 2 (Spline admissible operators).

- L is shift invariant.
- L admits a green function ψ_L (of slow growth): $L\psi_L = \delta$.
- The (growth-restricted) null-space of L has finite dimension.
- \bullet The native space of L is defined by

$$\mathcal{B}(\Omega) = \{u \text{ of slow growth}, ||Lu||_{TV} < +\infty\}.$$

Slow growth means essup $|f(x)|(1+||x||)^{-n_0}<+\infty$ for a given integer n_0 .

A more recent result

Michael Unser, Julien Fageot, and John Paul Ward. Splines are universal solutions of linear inverse problems with generalized-tv regularization. SIAM review, to appear, 2017.

Theorem 3.

Assume that $\Omega = \mathbb{R}^d$ and that L is spline admissible.

Assume that $f_y = \iota_C$, where C is a nonempty closed convex set of \mathbb{R}^m .

Then the extreme points of \hat{U} are of the form:

$$\hat{u} = u_K + \sum_{i=1}^p \alpha_i \psi_L(\cdot - x_k) \text{ with } p \leq m \text{ and } u_K \in \ker(L).$$

Many other subtelties in both papers...

Part I - Representation of solutions

- ① Can we relax the hypotheses on the domain Ω ?
- 2 Can we relax the hypotheses on the operator L and on the space \mathcal{B} ?
- 3 Can we relax the hypotheses on the function f_b ?

Part II - Numerical computation

① Can we use these results to design new numerical solvers?

PART I : ON THE SOLUTIONS STRUCTURE

Assumptions on Ω

We assume that Ω is a separable, locally compact topological space.

This covers open subsets $\Omega \subseteq \mathbb{R}^d$ or the torus $\mathbb{T}^d = (\mathbb{R} \backslash \mathbb{N})^d$.

Assumptions on L and B

- The operator L is continuous on \mathcal{B} .
- $\operatorname{ran}(L)$ is closed and there exists a closed subspace W such that $\operatorname{ran} L \oplus W = \mathcal{M}$.
- ullet ker(L) is closed and there exists a closed subspace V such that ker $L \oplus V = \mathcal{B}$.

Implies existence a continuous pseudo-inverse denoted $L^+: \mathcal{M} \to V$.

Assumptions on f_y

We only require existence of at least one minimizer in problem (\mathcal{P}) :

$$\inf_{u \in \mathcal{B}(\Omega)} f_y(A^*u) + ||Lu||_{TV}, \tag{P}$$

In particular, f_y can be nonconvex.

Assumptions on a_i

The functionals $a_i \in \mathcal{B}^*(\Omega)$ should additionally satisfy

$$\rho_i = (L^+)^* a_i \in C^0(\Omega).$$

Theorem (Flinth, W. 2017)

Under the previous assumptions, the solution set contains elements of the form:

$$\hat{u} = u_K + \sum_{i=1}^p \alpha_i L^+ \delta_{x_k}$$
 with $p \leq \bar{m}$,

where $u_K \in \ker(L)$ and

$$\bar{m} := m - \dim(A^* \ker(L)).$$

Example 1: $\Omega \subseteq \mathbb{R}^d$ and $L = \mathrm{Id}$

In that case $L^+ = \text{Id}$ and $\ker(L) = \{0\}$.

Hence, the theorem states that there always exists m-sparse solutions.

This setting is the one of super-resolution and of synthesis based priors.

Emmanuel J Candès and Carlos Fernandez-Granda.
Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906-956, 2014.

Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht. Compressed sensing off the grid.

IEEE transactions on information theory, 59(11):7465-7490, 2013.

Example 2: $\Omega = [0,1]$ and L = D

In that case

$$(L^{+}\mu)(s) = \mu([0,s]) - \int_{0}^{1} \mu([0,t]) dt$$

and

$$\ker(L) = \operatorname{span}(1).$$

 \Rightarrow There always exists solutions with at most m jumps.

Example 3: $\Omega = \mathbb{R}^2$ and $L = \Delta \Delta$

In that case, $\psi_L(x) = ||x||^2 \log(||x||)$ and

$$\hat{u} = u_K + \sum_{i=1}^{m} \alpha_i \psi_L(\cdot - x_i),$$

is a polyharmonic spline, with u_K a polynomial of degree 1.

Figure: Polyharmonic splines are used for data interpolation

Example 3: $\Omega = \mathbb{R}^2$ and $L = \Delta \Delta$

In that case, $\psi_L(x) = ||x||^2 \log(||x||)$ and

$$\hat{u} = u_K + \sum_{i=1}^m \alpha_i \psi_L(\cdot - x_i),$$

is a polyharmonic spline, with u_K a polynomial of degree 1.

The traditional approach

Usually, polyharmonic splines are appearing in the frame of RKHS.

$$\inf_{u \in H^2(\mathbb{R}^2)} \frac{1}{2} \sum_{i=1}^m (u(x_i) - y_i)^2 + ||\Delta u||_{L^2(\mathbb{R}^d)}^2.$$

Example 4: $\Omega = [0,1]^2$ and $L = \nabla$

This operator is out of the theorem's scope!

For instance it cannot explain the stair-casing effect.

Problem: L maps $BV(\Omega)$ to a set of vectorial measures.

Figure: The staircase effect with total variation minimization

Main ideas - Killing f_y

Let \tilde{u} denote a solution of (\mathcal{P}) . Consider the following problem:

$$\min_{u \in \mathcal{B}, A^* u = A^* \tilde{u}} \|Lu\|_{TV}$$

Any solution \hat{u} of this problem is also a solution of (\mathcal{P}) since:

- $f_y(A^*\hat{u}) = f_y(A^*\tilde{u})$
- $||L\hat{u}||_{TV} = ||L\tilde{u}||_{TV}$ (otherwise, \tilde{u} would not be a solution).

Hence we only need to prove the result for the linearly constrained problem:

$$\min_{u \in \mathcal{B}, A^* u = y} \|Lu\|_{TV}$$

Main ideas - Killing L

Any $u \in \mathcal{B}$ can be decomposed as

$$u = u_K + L^+ \mu$$
 with $\mu \in \mathcal{M}$ and $u_K \in \ker(L)$

Hence:

$$\min_{u \in \mathcal{B}, A^*u=y} \|Lu\|_{TV} = \min_{\substack{u_K \in \ker(L) \\ \mu \in \mathcal{M} \\ A^*(u_K + L^+\mu) = y}} \|\mu\|_{TV}.$$

Now, set $X = A^* \ker(L)$ and decompose $y = y_X + y_{X^{\perp}}$:

$$\min_{\substack{u_K \in \ker(L) \\ \mu \in \mathcal{M} \\ A^*(u_K + L^+ \mu) = y}} \|\mu\|_{TV} = \min_{\substack{\mu \in \mathcal{M} \\ A^*(L^+ \mu) = y_{X^\perp}}} \|\mu\|_{TV} = \min_{\substack{\mu \in \mathcal{M} \\ \Pi_{X^\perp}(A^*(L^+ \mu)) = y_{X^\perp}}} \|\mu\|_{TV}$$

Setting
$$H = \Pi_{X^{\perp}}(A^*(L^+))$$
, we get:

$$\min_{\substack{\mu \in \mathcal{M} \\ H\mu = y_{_X} \perp}} \|\mu\|_{TV}$$

with $\dim(\operatorname{ran}(H)) = m - \dim(A^* \ker(L)) = \bar{m}$.

3 /

(3)

Main ideas - The standard ℓ^1 trick

$$\min_{\mu \in \mathcal{M}, H\mu = y_{X^{\perp}}} \|\mu\|_{TV}$$

The extreme points of the solution set are of the form:

$$\hat{\mu} = \sum_{i=1}^{p} \alpha_i \delta_{x_i} \text{ with } p \leq \bar{m}.$$

PART II: COMPUTING THE SOLUTIONS

→ 25 / 38

Assumptions

- \bullet f_y is convex lower semi-continuous.
- $\ker(L) = \operatorname{span}(\lambda_1, \dots, \lambda_r)$ with $r < +\infty$.
- $\operatorname{ran}(L) = \mathcal{M}$.

We are looking for a solution of type:

$$\hat{u} = \sum_{i=1}^{r} c_i \lambda_i + L^+ \left(\sum_{i=1}^{p} d_i \delta_{x_j} \right).$$

Assumptions

- \bullet f_y is convex lower semi-continuous.
- $\ker(L) = \operatorname{span}(\lambda_1, \ldots, \lambda_r)$ with $r < +\infty$.
- $\operatorname{ran}(L) = \mathcal{M}$.

We are looking for a solution of type:

$$\hat{u} = \sum_{i=1}^{r} c_i \lambda_i + L^+ \left(\sum_{i=1}^{p} d_i \delta_{x_j} \right).$$

Dual of problem (P)

Under the previous assumptions:

$$\min_{u \in \mathcal{B}} J(u) = \sup_{\substack{q \in \mathbb{R}^m \\ Aq \in \operatorname{ran}L^* \\ \left\|\sum_{i=1}^m q_i \rho_i\right\|_{\infty} \leq 1}} -f_y^*(q).$$

Let (\hat{u}, \hat{q}) denote a primal-dual pair, then:

$$A\hat{q} \in L^*\partial(\|\cdot\|_{TV})(L\hat{u}) \text{ and } -\hat{q} \in \partial f_y(A^*\hat{u}).$$
 (4)

What does the dual tell us?

Let (\hat{u}, \hat{q}) denote a primal-dual pair of the dual and

$$I(\hat{q}) = \left\{ x \in \Omega, \left| \sum_{i=1}^{m} q_i \rho_i \right| (x) = 1 \right\}.$$

Then

$$\operatorname{supp}(L\hat{u}) \subseteq I(\hat{q}).$$

In particular, if $I(\hat{q}) = \{x_1, \dots, x_p\}$, then \hat{u} can be written as:

$$\hat{u} = u_K + \sum_{k=1}^{p} d_k L^+ \delta_{x_k}$$

with $u_K \in \ker L$ and $(d_k) \in \mathbb{R}^p$.

If problem (\mathcal{P}) admits a unique solution \hat{u} , then $I(\hat{q}) = \operatorname{supp}(L\hat{u})$ and $p \leq \bar{m}$.

Retrieving the primal solution (for discrete $I(\hat{q})$)

Let $(\lambda_i)_{1 \le i \le r}$ denote a basis of ker L and define the matrix

$$M = \left[(\langle a_i, \lambda_k \rangle)_{1 \le i \le m, 1 \le k \le r}, (\rho_i(x_j))_{1 \le i \le m, 1 \le j \le p} \right]$$

Then (\mathcal{P}) becomes a finite dimensional convex program:

$$\min_{c \in \mathbb{R}^r, d \in \mathbb{R}^p} f_y \left(M \begin{bmatrix} c \\ d \end{bmatrix} \right) + \|d\|_1. \tag{5}$$

Summary

- Solve the dual problem to find \hat{q} .
- 2 Determine $I(\hat{q}) = \{x \in \Omega, |\sum_{i=1}^m \hat{q}_i \rho_i(x)| = 1\}.$
- 3 If $I(\hat{q})$ is finitely supported, solve the primal (5).

The devil in the dual

$$\sup_{\substack{q \in \mathbb{R}^m \\ Aq \in \operatorname{ran}L^* \\ \left\| \sum_{i=1}^m q_i \rho_i \right\|_{\infty} \le 1}} -f_y^*(q).$$

How can we handle the infinite dimensional constraints

$$Aq \in \operatorname{ran} L^*$$
 and $\left\| \sum_{i=1}^m q_i \rho_i \right\|_{\infty} \le 1$?

An easy one

$$Aq \in \operatorname{ran} L^* \Leftrightarrow Aq \in \ker(L)^{\perp} \Leftrightarrow \sum_{i=1}^m q_i \langle a_i, \lambda_j \rangle = 0, \ \forall 1 \le j \le r$$

Hence, the constraint set is simply r linear constraints.

→ 29 / 38

Trigonometric polynomials

Assume that $\Omega = \mathbb{T}$.

Assume that $(\rho_i)_{1 \le i \le m}$ are trigonometric polynomials:

$$\rho_i(t) = \sum_{j=-K}^K \gamma_{i,j} \exp(-2\iota \pi j t),$$

with $\gamma_{j,i} = -\gamma^*_{-j,i}$.

The dual can be expressed as a semi-definite program (if f_y is semi-definite representable).

This setting is the one of super-resolution and of synthesis based priors.

Bogdan Dumitrescu.

Positive trigonometric polynomials and signal processing applications, volume 103.

Piecewise linear functions on polyhedral pieces

Under this assumption $\|\sum_{i=1}^m q_i \rho_i\|_{\infty}$ is necessarily attained on the vertices v_j . Letting $R = (\rho_i(v_j))_{1 \le i \le m, j \in J}$, we get:

$$\left\| \sum_{i=1}^{m} q_i \rho_i \right\|_{\infty} \le 1 \Leftrightarrow \|Rq\|_{\infty} \le 1.$$

A serious issue?

For piecewise linear functions (ρ_i) , $I(\hat{q})$ is usually not discrete.

A serious issue?

For piecewise linear functions (ρ_i) , $I(\hat{q})$ is usually not discrete.

Proposition (Flinth, W. 2017)

There exists at least one solution supported on the vertices v_j .

Solution given by:

$$M = \left[(\langle a_i, \lambda_k \rangle)_{1 \le i \le m, 1 \le k \le r}, (\rho_i(v_j))_{1 \le i \le m, j \in J} \right]$$

$$\min_{c \in \mathbb{R}^r, d \in \mathbb{R}^p} f_y \left(M \begin{bmatrix} c \\ d \end{bmatrix} \right) + \|d\|_1.$$

New insight on the standard approach

We just showed the equivalence:

Discretizing by fixing possible locations

Using piecewise linear approximations of (ρ_i)

New insight on the standard approach

We just showed the equivalence:

Discretizing by fixing possible locations

Using piecewise linear approximations of (ρ_i)

Non uniqueness of the solutions

What do we actually measure?

New insight on the standard approach

We just showed the equivalence:

Discretizing by fixing possible locations

Using piecewise linear approximations of (ρ_i)

Non uniqueness of the solutions

What do we actually measure?

0-th and 1st order moments of $L\hat{u}$ on a polyhedral piece.

New insight on the standard approach

We just showed the equivalence:

Discretizing by fixing possible locations

Using piecewise linear approximations of (ρ_i)

Non uniqueness of the solutions

What do we actually measure?

0-th and 1st order moments of $L\hat{u}$ on a polyhedral piece.

A large amount of measures satisfy those moment conditions.

Sparsifying the solution

We can merge adjacent Dirac masses to a single one if they have the same sign.

 ${\bf Figure: \, Different \, \, solutions}$

$$L = \operatorname{Id} \ \mathbf{and} \ \Omega = [0, 1]$$

Set $(a_i)_{1 \leq i \leq m}$ as random piecewise linear functions.

Set $y = A^*u_0$ (no perturbation) and solve the constrained problem:

$$\min_{A^*u=y} \|u\|_{TV}$$

Figure: True measure u_0 and the recovered ones with m = 12.

 $\min_{u \in BV([0,1[)]} ||Du||_{TV} + \alpha ||A^*u - b||_1,$

(6)

$$L = \operatorname{Id} \ \mathbf{and} \ \Omega = [0, 1]$$

Set $(a_i)_{1 \leq i \leq m}$ as random piecewise linear functions.

Set
$$y = A^*u_0 + \eta$$
 with η Bernoulli-Gaussian noise:

Figure: Exact recovery despite noise (42 measurements, 3 jumps)

$$L = \operatorname{Id} \text{ and } \Omega = [0, 1]^2$$

Set $(a_i)_{1 \leq i \leq m}$ as random piecewise linear functions.

Set $y = A^*u_0 + \eta$ with η Gaussian noise:

$$\min_{u \in \mathcal{M}([0,1]^2)} \|u\|_{TV} + \alpha/2 \|A^* u - b\|_2^2, \tag{7}$$

Figure: True, recovered and sparsified solutions.

The final word

Theoretical insights

Generalized Fisher-Jerome by:

- Arbitrary data fitting terms f_y .
- No need for finite dimensional kernels
- Bounded and unbounded domains treated in a unified manner.

Numerical insights

- Exact solutions can be computed without discretization.
- New view on the standard approach.
- New sparsifying procedure with theoretical guarantees.

Outlook

- Extend the theory to more general operators (e.g. $BV(\mathbb{R}^2)$).
- Evaluate trade-off accuracy/complexity.
- Derive compressed sensing type guarantees.