Control Problems with measures data

Ariela Briani

UMA - ENSTA (Commands-INRIA), Paris, France. (Dipartimento di Matematica, Università di Pisa, Italy.)

Joint work with: H. ZIDANI (ENSTA & Commands-INRIA, Paris, France)

GdR 3273 MOA, Porquerolles, october 18-21, 2009

Motivation and Model problem

- Motivation
- Model problem : minimum time for non-auto. systems

2 A final state constrained control problem with measure data

- The definition of solution for the state equation
- Bilateral L¹-viscosity solution

4 日 2 4 周 2 4 月 2 4 月

Motivation : a model problem for multi-stage launchers

Motivation :

We want to steer a *multi-stage* heavy space launcher to the GTO orbit with *minimal fuel consumption* and with a *fixed final mass* (the satellite we leave on the GTO).

(Model problem on a contract CNES-INRIA)

Ariane 5

Main ideas of the model : If the launcher is always at full thrust, minimizing fuel consumption \iff reach GTO in minimal time. The mass of the fuel is decreasing w.r. to time \implies we can express the variation of the mass as a function of T - t (T fixed final time).

O. Bokanowski, A. Briani, H. Zidani *Minimum time control problems for non autonomous differential equations*, Systems & Control Letters, 58, 742-746, 2009.

(□) (同) (E) (E)

A minimum time problem

Dynamics

Fix $x \in \mathbb{R}^d$, $T \ge 0$ a control $\alpha \in \mathcal{A} := L^{\infty}((0, +\infty); \mathcal{A})$, \mathcal{A} is a compact convex set of \mathbb{R}^m . The trajectory $y_x^{\alpha, T}$ is the solution of :

$$\begin{cases} \dot{y}(t) = f(T - t, y(t), \alpha(t)), & \text{for } t \in (0, T) \\ y(0) = x. \end{cases}$$

Minimum time function

The target $\mathcal C$ is a closed convex subset of ${\rm I\!R}^d$. We look for

$$\mathcal{T}(x) := \inf_{T \in \mathcal{R}(x)} T,$$

where $\mathcal{R}(x) := \{ T \ge 0, \text{ such that } \exists \alpha : y_x^{\alpha, T}(T) \in \mathcal{C} \}.$

HJB approach : Dynamic Programming Principle (DPP)?

For an initial state $x \in {\rm I\!R}^d$, an intermediate time $0 \le h \le {\cal T}(x)$, do we have

$$\mathcal{T}(x) \stackrel{?}{=} \inf_{T \in \mathcal{R}(x)} \mathcal{T}(y_x^{\alpha, T}(h)) + h$$

HJB approach : Dynamic Programming Principle (DPP)?

For an initial state $x \in {\rm I\!R}^d$, an intermediate time $0 \le h \le {\mathcal T}(x)$, do we have

$$\mathcal{T}(x) \stackrel{?}{=} \inf_{T \in \mathcal{R}(x)} \mathcal{T}(y_x^{\alpha, T}(h)) + h$$

The autonomous case

When the dynamic *f* is independent of time the DPP HOLDS ! The HJB approach works well both theoretically and numerically.

[M. Bardi, M.G. Crandall, M. Falcone, P.-L. Lions S. Osher, C.-W. Shu, ...]

HJB approach : Dynamic Programming Principle (DPP)?

For an initial state $x \in {\rm I\!R}^d$, an intermediate time $0 \le h \le {\cal T}(x)$, do we have

$$\mathcal{T}(x) \stackrel{?}{=} \inf_{T \in \mathcal{R}(x)} \mathcal{T}(y_x^{\alpha, T}(h)) + h$$

The autonomous case

When the dynamic f is independent of time the DPP HOLDS! The HJB approach works well both theoretically and numerically. [M. Bardi, M.G. Crandall, M. Falcone, P.-L. Lions S. Osher, C.-W. Shu, ...]

In our case : $\mathcal{T}(x) \ge \inf_{T \in \mathcal{R}(x)} \mathcal{T}(y_x^{\alpha, T}(h)) + h$ but the inequality can be strict! (Examples)

• • • • •

What to do?

We define the reachability value function :

Let φ be the function that takes the value 0 on C and 1 otherwise. For each (x, T) we set

$$v(x, T) := \min_{\alpha \in \mathcal{A}} \varphi(y_x^{\alpha, T}(T)).$$

THEN :

• We can reconstruct $\mathcal{T}(x)$:

$$\mathcal{T}(x) = \min \left\{ T \ge 0 \text{ such that } v(x, T) = 0 \right\}.$$

2 v fulfills a Dynamic Programming Principle.

The optimal control problem

For $g_i(t, Y, \alpha)$, i = 1, ..., M t-measurable, uniformly Y-Lipschitz and bounded. $X = \mathbb{R}^N$.

$$\begin{cases} \dot{Y}(t) = g_0(t, Y(t), \alpha(t)) & \text{for } t \in (\tau, T] \\ Y(\tau^-) = X \end{cases}$$

The value function

$$v(X,\tau) := \inf_{\alpha \in \mathcal{A}} \varphi(Y_{X,\tau}^{\alpha}(T))$$

arphi is lower semi continuous $\mathcal{A} = L^\infty({\rm I\!R};\mathcal{A})$, \mathcal{A} compact.

The optimal control problem

For $g_i(t, Y, \alpha)$, i = 1, ..., M t-measurable, uniformly Y-Lipschitz and bounded. $X = \mathbb{IR}^N$. A Radom measure $\mu = (\mu_1, ..., \mu_M)$.

$$\begin{cases} \dot{Y}(t) = g_0(t, Y(t), \alpha(t)) + \sum_{i=1}^{M} g_i(t, Y(t), \alpha(t)) d\mu_i & \text{for } t \in (\tau, T] \\ Y(\tau^-) = X \end{cases}$$

We can define a unique solution $Y_{X,\tau}^{\alpha}(t) \in BV([0, T]; \mathbb{R}^N)$.

The value function

$$v(X,\tau) := \inf_{\alpha \in \mathcal{A}} \varphi(Y_{X,\tau}^{\alpha}(T))$$

arphi is lower semi continuous $\mathcal{A} = L^\infty(\mathbb{R}; \mathcal{A})$, \mathcal{A} compact.

HJB approach?

Dynamic Programming Principle holds :

$$v(X,\tau) = \inf_{a \in A} v(Y_{X,\tau}^{\alpha}(h),h) \qquad \tau \leq h \leq T.$$

Formally HJB :

$$-v_t(X,t)+$$

$$+\sup_{a\in A}\left\{-D_xv(X,t)\cdot g_0(t,X,a)-D_xv(X,t)\cdot\sum_{i=1}^M g_i(t,X,a)d\mu_i\right\}=0$$

with final condition $v(X, T) = \varphi(X)$ $X \in \mathbb{R}^N$.

What is the meaning of $D_x v(X, t) \cdot \mu$ (V is not smooth)?

Graph completion (G. Dal Maso- F.Rampazzo, 1991)

- B ∈ BV⁻((0, T); ℝ^M) is a primitive of µ and T := {t_i, i ∈ ℕ} the subset of all the discontinuity points of B.
- $(\psi_t)_{t\in\mathcal{T}}:=(\psi^1_t,\ldots,\psi^M_t)$ be a family of Lipschitz continuous maps :

$$\sum_{t\in\mathcal{T}}V_0^1(\psi_t)<\infty \text{ and } \psi_t(0)=B(t^-) \quad \psi_t(1)=B(t^+) \quad \forall t\in\mathcal{T}$$

We define $\mathcal{W}: [0, T] \rightarrow [0, 1]:$

$$\mathcal{W}(t) := \frac{1}{(1 + \sum_{i=1}^{+\infty} a_i)} \left(\frac{t + V_0^t(B)}{T + V_0^T(B)} + \sum_{t_i < t} V_0^1(\psi_{t_i}) \right).$$

The graph complention of B corresponding to $(\psi_t)_{t\in\mathcal{T}}$ is :

$$(\phi_0, \phi_1, \dots, \phi_M)(s) = \begin{cases} (t, B(t)) & \text{if } s = \mathcal{W}(t); \ t \in [0, T] \setminus \mathcal{T} \\ (t_i, \psi_{t_i} \left(\frac{s - \mathcal{W}(t_i)}{\mathcal{W}(t_i^+) - \mathcal{W}(t_i)} \right)) & \text{if } s \in [\mathcal{W}(t_i), \mathcal{W}(t_i^+)] \ t_i \in \mathcal{T} \end{cases}$$

The definition of solution for the state equation Bilateral L^1 -viscosity solution

Graph completion : an example

Ex. : $\mu = \delta_1, t \in [0, 2]$

For
$$\alpha \in \mathcal{A}$$
, let $Z^{\alpha}_{X,\sigma} : [0,1] \to \mathrm{I\!R}^N$ be the solution of $(\mu = \mu^a dt + \mu^s)$

$$\begin{cases}
\frac{dZ}{ds}(s) = \sum_{i=1}^{M} g_i(\phi_0(s), Z(s), \alpha(\phi_0(s))) \left(\mu^a(\phi_0(s)) \frac{d\phi_0}{ds}(s) + \frac{d\phi_i}{ds}(s) \right) + g_0(\phi_0(s), Z(s), \alpha(\phi_0(s))) \frac{d\phi_0}{ds}(s) \quad \text{for } s \in (\sigma, 1] \\
\frac{dZ}{ds}(s) = X
\end{cases}$$

Theorem (G. Dal Maso, F. Rampazzo 91; A.B. 1999)

Let μ be a Radom measure and $(\psi_t)_{t\in\mathcal{T}}$ given as before. Then $Y^{\alpha}_{X,\tau} \in BV([\tau, T]; \mathbb{R}^N)$ is a solution in the "sense of measures" if and only if there exists a solution $Z^{\alpha}_{X,\sigma} \in AC([\sigma, 1]; \mathbb{R}^N)$ such that

$$Z(\mathcal{W}(t)) = Y(t) \quad \forall t \in [\tau, T]$$

- Under commutativity assumptions on the g_i the definition does not depent on (ψ_t)_{t∈T}. (A. Bressan & F. Rampazzo 91, 94)
- There are different definitions. (J.P. Raymond 97).

The "reparametrised" optimal control problem

Define the value function for Z :

$$\overline{v}(X,\sigma) = \inf_{\alpha \in \mathcal{A}} \phi(Z^{\alpha}_{X,\sigma}(1)).$$

By the previous theorem we have :

 $v(X, \tau) = \overline{v}(X, W(\tau))$ W(t) "inverse" of $\phi_0(s) \Rightarrow Known!$

The HJB equation for \bar{v} is without measure :

$$\begin{cases} -\bar{v}_{\tau}(z,\tau) + \sup_{a \in A} \left\{ -D_{z}\bar{v}(z,\tau) \cdot \mathcal{F}(\tau,z,a) \right\} = 0 \\ \bar{v}(z,T) = \varphi(z) \end{cases}$$

 $\mathcal{F}(\tau, z, a)$ is τ -measurable and φ is lower semi continuous, \Rightarrow NOT classical viscosity solution ! ln : A. Briani & H. Zidani Characterisation of the value function of final state constrained control problems with measures data, (in preparation).

New definition : Bilateral L^1 viscosity solution

A bounded *l.s.c. function u is a Bilateral L*¹-viscosity solution if : for any $b \in L^1(0, T)$, $\phi \in C^1(\mathbb{R}^N)$ and (x_0, t_0) local minimum point for $u(x, t) - \int_0^t b(s)ds - \phi(x)$ we have

$$\lim_{\delta \to 0^+} \quad \operatorname*{ess\ sup}_{|t-t_0| \leq \delta} \quad \underset{x \in B_{\delta}(x_0), \ p \in B_{\delta}(D\phi(x_0))}{\sup} \left\{ H(t, x, p) + b(t) \right\} \geq 0$$

and

$$\lim_{\delta\to 0^+} \quad \operatorname*{ess inf}_{|t-t_0|\leq \delta} \quad \inf_{x\in B_\delta(x_0),\ p\in B_\delta(D\phi(x_0))} \left\{H(t,x,p)+b(t)\right\} \leq 0.$$

Bilateral : E.N. Barron & R. Jensen 1990-1991; G. Barles & B. Perthame 1987; L^1 -viscosity solution : H. Ishii 1985; P.L. Lions & B. Perthame 1987; D. Nunziante 1990, 1992; A.B. & F. Rampazzo 2005; G Barles 2006; M. Bourgoing 2008.

The definition of solution for the state equation Bilateral $L^{1}\mbox{-viscosity solution}$

- Consistency, stability and uniqueness.
- The value function \bar{v} is a Bilateral L^1 -viscosity solution.

CONVERGENCE RESULT :

Let $\varphi_m \in C^0$ and $\varphi_m(x) \uparrow \varphi(x)$, $\Delta_k := (\Delta x_k, \Delta t_k)$ and denote by $v_m^{\Delta_k}$ the solution of

$$S(t_{n+1},x_j,v_j^{n+1},v^n)=0 \qquad v(x_j,0)=\varphi_m(x_j).$$

If the scheme S is Monotone, Stable and "Consistent". Then, as $k \to 0$, $m \to \infty$, $v_m^{\Delta k}$ converges pointwise to the value function \bar{v} . (An example of finite difference type S is given.)

 \Rightarrow We can calculate \overline{v} and by $v(X, \tau) = \overline{v}(X, W(\tau))$ obtain v !

.... thanks for your attention.

イロト イポト イヨト イヨト

э