Controlled CO, | Diversified fuels | Fuel-efficient vehicles | Clean refining | Extended reserves

Constrained Derivative Free
Optimization for Reservoir
. Characterization

Hoél Langouét
Delphine Sinoquet

N\
\g

© IFP

Technology, Computer Science, and Applied Mathematics Division — Constraints Derivative Free Optimization — 18-21 October 2009



B .-

Summary

= Context and objectives of the reservoir characterization
= Derivative free optimization methods

= SQA method (Sequential Quadratic Approximation)

= [ntroducing constraints

m Results

= on benchmark test cases
= 0N a reservoir engineering application

m Conclusions and outlook
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Reservoir characterization

History matching from production data and 4D seismic data

for characterization of dynamic behavior of reservoir during the
production of a field
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Forward problem : fluid flow simulation in reservoir
petro-elastic modelling
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Reservoir characterization

Characteristics of the optimization problem
min f(m) := ||dp(m)—dP*|E,+ds(m)—dZ*|| ¢

nonlinear least-square problem

data space: up to 1.000.000 measurements

parameter space: ~10 up to 100 (various types)
gradient unavailable

simulation expensive in computation time (1mn - hours)
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Derivative free optimization methods

m Classical methods using gradients approached by
finite differences

E
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Derivative free optimization methods

= Classical methods using gradients approached by
finite differences — / /,«

m Pattern Search

= Nelder Mead Simplex
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Derivative free optimization method

m Classical methods using gradients approached by
finite differences

u g o _—

m Pattern Search
= Nelder Mead Simplex

= Genetic algorithm (global): CMA-ES
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Derivative free optimization methods

m Classical methods using gradients approached by
finite differences

m Pattern Search
= Nelder Mead Simplex
= Genetic algorithm (global): CMA-ES

= Optimization based on surrogate models
= global model: (ex kriging + Expected Improvement criterion — D Jones)
= |ocal quadratic model in a trust region —

, v vl
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SQA Method (Sequential Quadratic Approximation) =&

M.J.D. Powell, 2004, The NEWUOA software for unconstrained optimizationl
without derivatives

1. Determine the first quadratic model () interpolating the objective
functionin n+2 <m < (n+ 1)(n+2)/2 points in a trust region A = p
2. At agiven iteration
A. Minimization of () and update of A
min Q(xopt + d)

ldl<A p
If ||d|| < 5 —> 2B

Otherwise we use the new evaluation f(2pt + d) to update
> the quadratic model ()

> the radius of the trust region /\ according to the predictivity of the quadratic
model R

f R > 0.1 —> 2A
B. Check the validity of () in the trust region

not valid: add a point Hn|’|1a2< i (xopt + d)] f(ﬂl?opt + d) is evaluated
d| <A

valid: If ||d|| > p —> 2.A, otherwise 3
3. Reduction of p and—> 2 or STOP 1
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Constraints in SQA

Derivatives of constraints are given

Taking into account constraints consists of 3 steps

1. The choice of initial points in the admissible domain defined by the
constraints

2. The minimization of the model under constraints in the trust region

min Q(zopt +d) st { C(z) <0,

ldl<a E(x) = 0.

3. The improvement of the model under inequality constraints in the
reduced trust region

max_ |li(zopt + d)] s.t. C(x) <0.
|d]|<A

calculated with SQPAL, a Sequential Quadratic Programming Approach
Sinoquet D. et Delbos F., 2007
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Function
o Quadratic Model Minimized
m | N T B |nterpolation Points
T yERf( 2 y) ® Min. of the model in Trust Region
’ Point improving the model
t T,y < [“35,35] ' — Trust Region A
S.T. 2 — Trust Region
r—3 gion p
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Results on More & Wild benchmark =

Moré J.J. & Wild S.M., 2007,
Benchmarking Derivative-Free Optimization Algorithms

m 29 Test cases constructed from the benchmark CUTEr

m
f@) =Y fulx)? under bound constraints
k=1

= Dimension: 2 to 7 parameters

= Stopping Criterion: number of function evaluations

—_ f(xneval) B fL

m Accuracy measured b T =
Y Y f(zo) — fr
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Results on More & Wild benchmark

Comparison between

- :
—/.I

SQA Local quadratic model in a trust
region
SQPAL | SQP method using gradient
approached by finite differences
EGO kriging with Expected
Improvement
CMAES | Genetic Algorithm
NMSMAX | Nelder Mead Simplex
Direct Pattern Search
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Results on a, More

Performances profiles for SIVIOOTH%pb
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Results on a More & Wilc

Data profiles for SMOOTH pb.
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Results on a More & Wild bénchmark

noise = 102

Performances profiles for NOISY pb.
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Example in high dimension
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Results on reservoir application
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Results on reservoir
application
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Results on reservoir ap
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Conclusions and outlook

x SQA

= Very efficient method for optimization without derivatives

= SQA better than EGO and SQPAL (Finite differences) on test cases

= SQA can deal examples of more than 100 parameters (¥ EGO)
= extension of SQA to nonlinear constraints (with derivatives)

= First results promising on the application in reservoir
characterization.
Next step : test with constraints

= Outlook
= adapt SQA to take into account nonlinear constraints without

derivatives available (for other applications: engine calibration)

= adapt SQA for least square problems (inverse problems)

Zhang, Conn, Scheinberg, 2009, A Derivative Free Algorithm
for the least-square minimization
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