Constrained Derivative Free Optimization for Reservoir Characterization

- Context and objectives of the reservoir characterization
- Derivative free optimization methods
- SQA method (Sequential Quadratic Approximation)
- Introducing constraints
- Results
 - on benchmark test cases
 - on a reservoir engineering application
- Conclusions and outlook

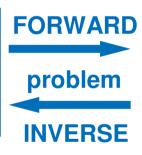
Reservoir characterization

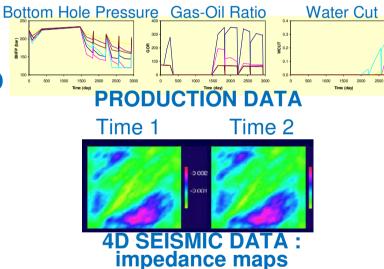
History matching from production data and 4D seismic data

for characterization of dynamic behavior of reservoir during the production of a field

Petrophysical parameters:
 Porosity and permeability
 Fault properties

• Well parameters: Skin, Pl ...





Forward problem: fluid flow simulation in reservoir petro-elastic modelling

Reservoir characterization

Characteristics of the optimization problem

$$\min_{m} f(m) := \|d_P(m) - d_P^{obs}\|_{C_P}^2 + \|d_S(m) - d_S^{obs}\|_{C_S}^2$$

- nonlinear least-square problem
- data space: up to 1.000.000 measurements
- parameter space: ~10 up to 100 (various types)
- gradient unavailable
- simulation expensive in computation time (1mn hours)

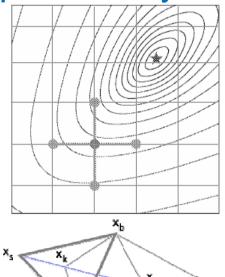


 Classical methods using gradients approached by finite differences

Classical methods using gradients approached by

finite differences

- Pattern Search
- Nelder Mead Simplex



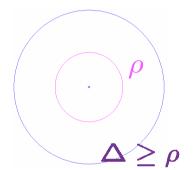
- Classical methods using gradients approached by finite differences
- Pattern Search
- Nelder Mead Simplex
- Genetic algorithm (global): CMA-ES

- Classical methods using gradients approached by finite differences
- Pattern Search
- Nelder Mead Simplex
- Genetic algorithm (global): CMA-ES
- Optimization based on surrogate models
 - global model: (ex kriging + Expected Improvement criterion D Jones)
 - local quadratic model in a trust region

SQA Method (Sequential Quadratic Approximation)

M.J.D. Powell, 2004, The NEWUOA software for unconstrained optimization without derivatives

- 1. Determine the first quadratic model Q interpolating the objective function in $n+2 \le m \le (n+1)(n+2)/2$ points in a trust region $\Delta = \rho$
- 2. At a given iteration
 - A. Minimization of Q and update of Δ
 - $\min_{\|d\| \le \Delta} Q(x_{opt} + d)$
 - $\quad \text{If } \|d\| < \frac{\rho}{2} \longrightarrow \text{2.B}$



- Otherwise we use the new evaluation $f(x_{opt}+d)$ to update
 - \succ the quadratic model Q
 - \succ the radius of the trust region \triangle according to the predictivity of the quadratic model R
- If $R > 0.1 \longrightarrow 2.A$
- B. Check the validity of Q in the trust region
 - not valid: add a point $\max_{\|d\| \leq ar{\Delta}} |l_t(x_{opt}+d)|$, $f(x_{opt}+d)$ is evaluated
 - valid: If $||d|| >
 ho \longrightarrow$ 2.A, otherwise 3
- 3. Reduction of ρ and \longrightarrow 2 or STOP

Constraints in SQA

Derivatives of constraints are given

Taking into account constraints consists of 3 steps

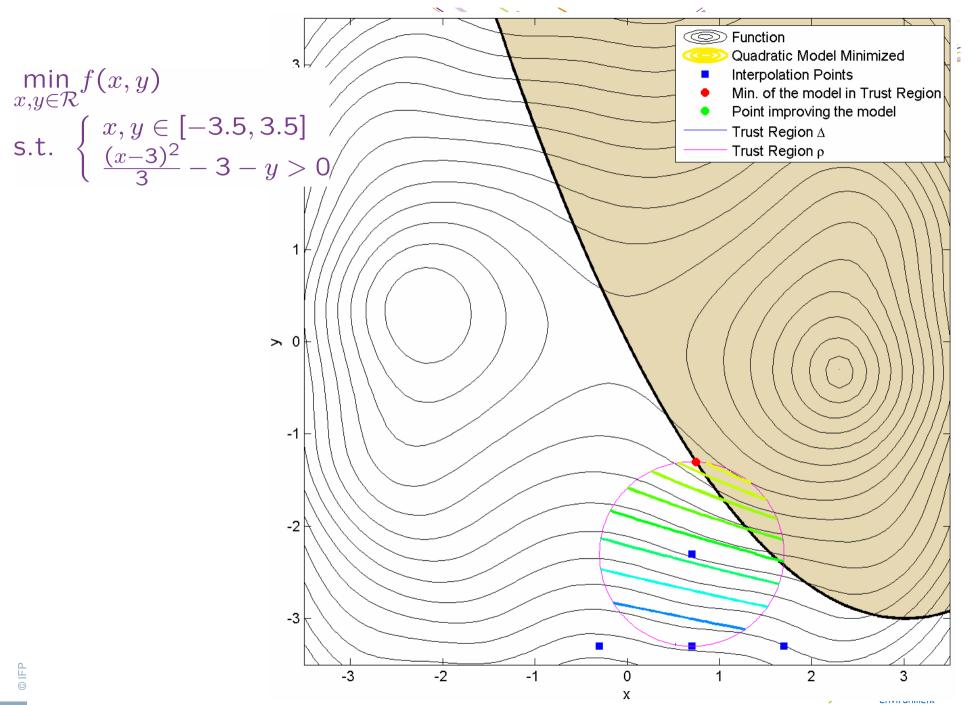
- 1. The choice of initial points in the admissible domain defined by the constraints
- 2. The minimization of the model under constraints in the trust region

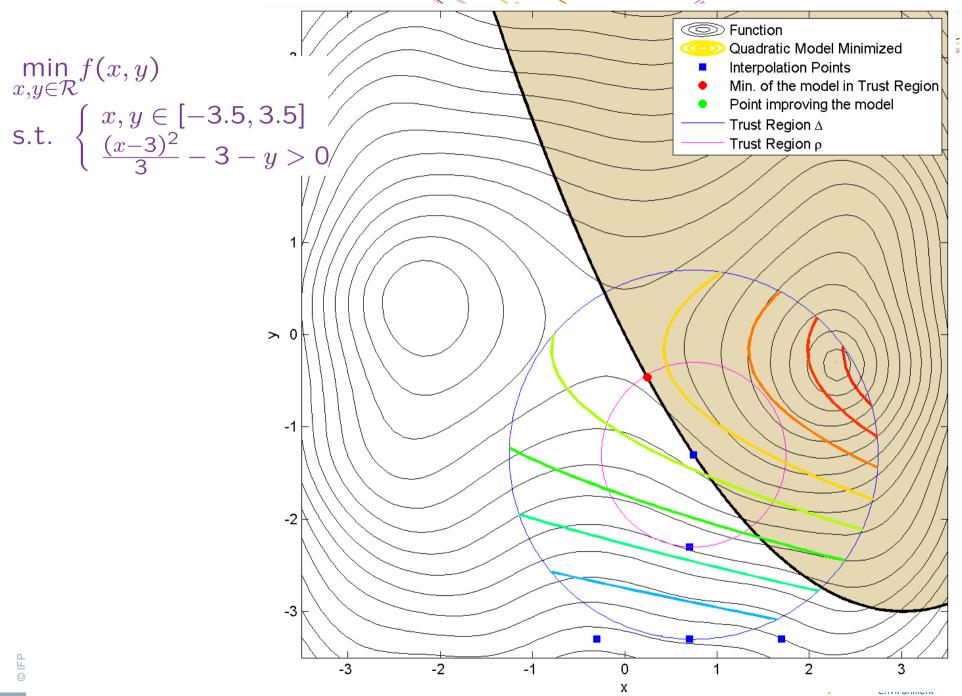
$$\min_{\|d\| \le \Delta} Q(x_{opt} + d) \quad s.t. \begin{cases} C(x) \le 0, \\ E(x) = 0. \end{cases}$$

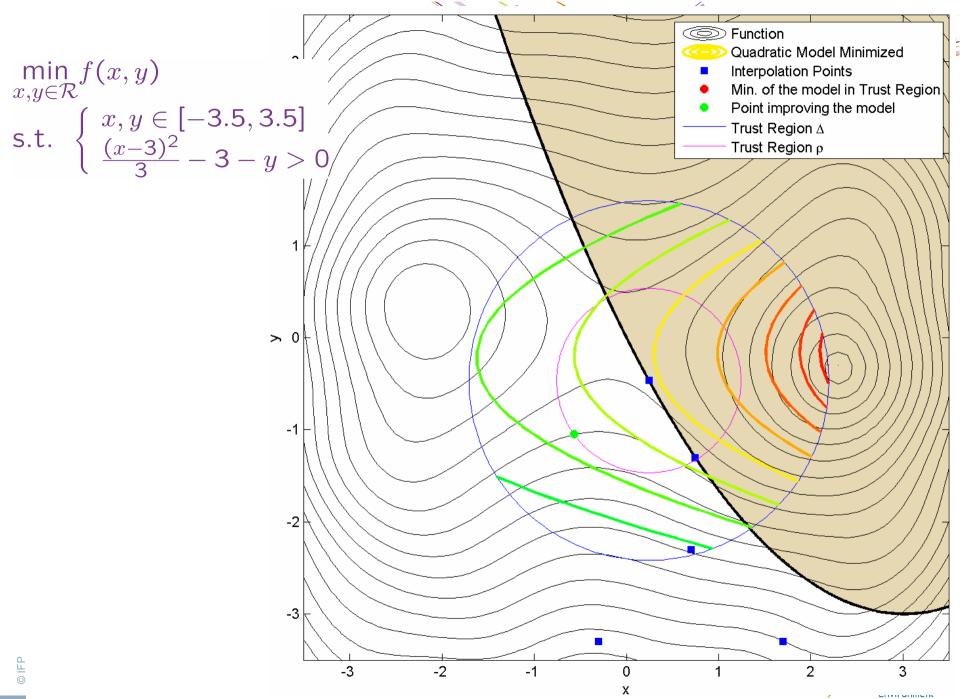
3. The improvement of the model under inequality constraints in the reduced trust region

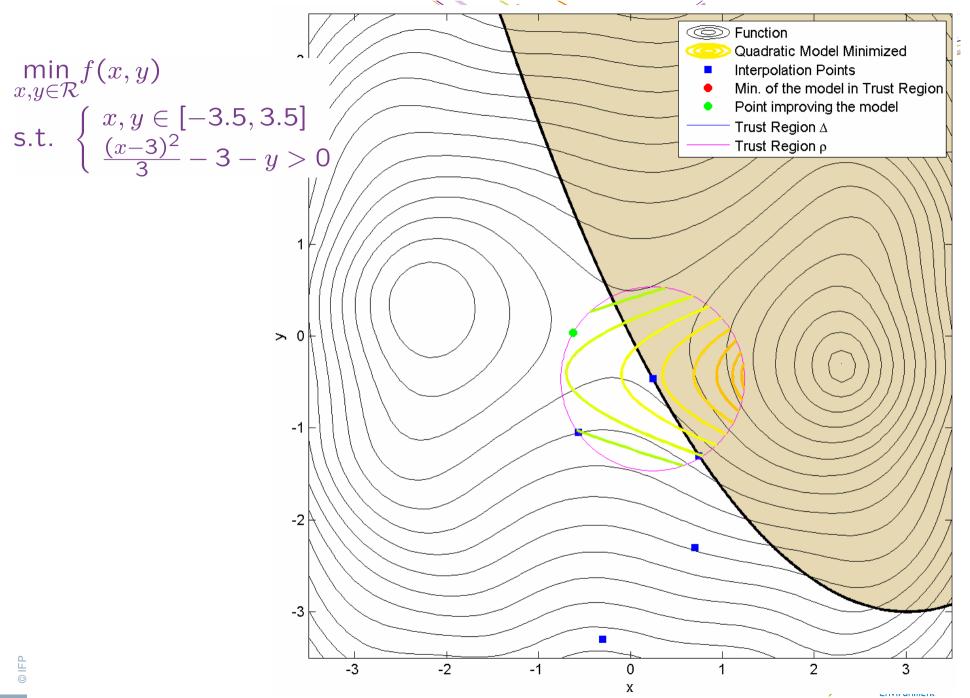
$$\max_{\|d\| \le \bar{\Delta}} |l_t(x_{opt} + d)| \quad s.t. \ C(x) \le 0.$$

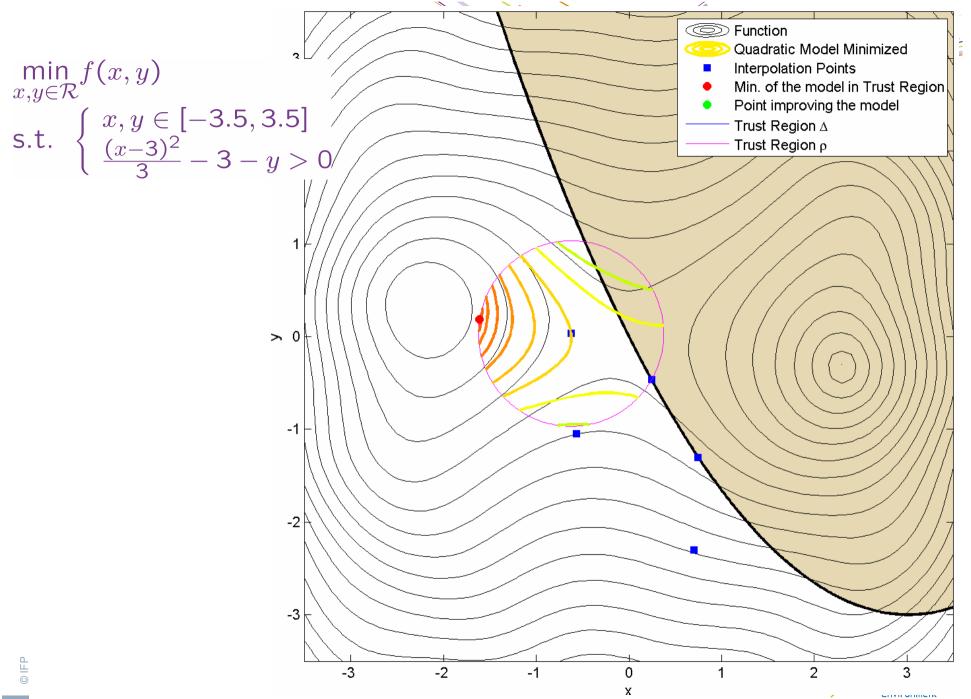
calculated with SQPAL, a Sequential Quadratic Programming Approach Sinoquet D. et Delbos F., 2007











Results on More & Wild benchmark

Moré J.J. & Wild S.M., 2007, Benchmarking Derivative-Free Optimization Algorithms

29 Test cases constructed from the benchmark CUTEr

$$f(x) = \sum_{k=1}^{m} f_k(x)^2$$
 under bound constraints

Dimension: 2 to 7 parameters

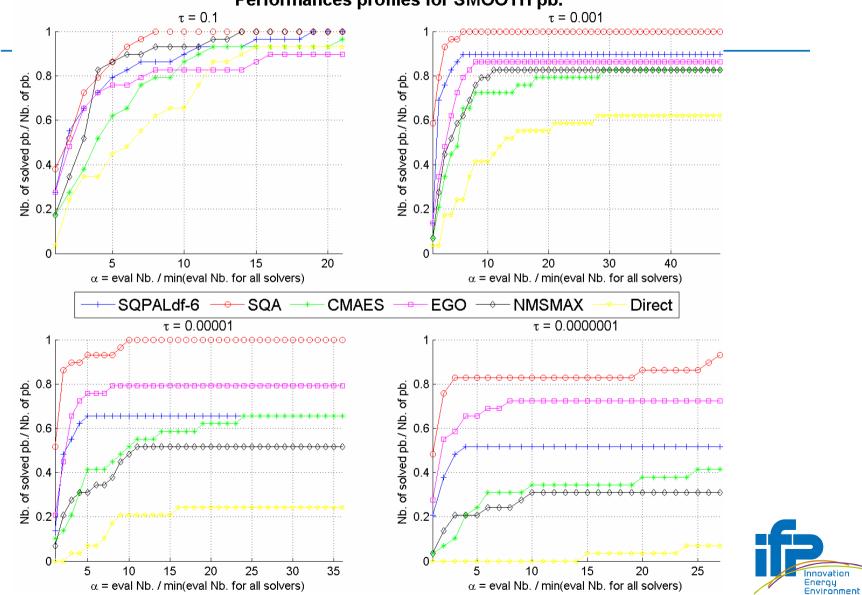
- Stopping Criterion: number of function evaluations
- Accuracy measured by $au = rac{f(x_{n_{eval}}) f_L}{f(x_0) f_L}$

Results on More & Wild benchmark

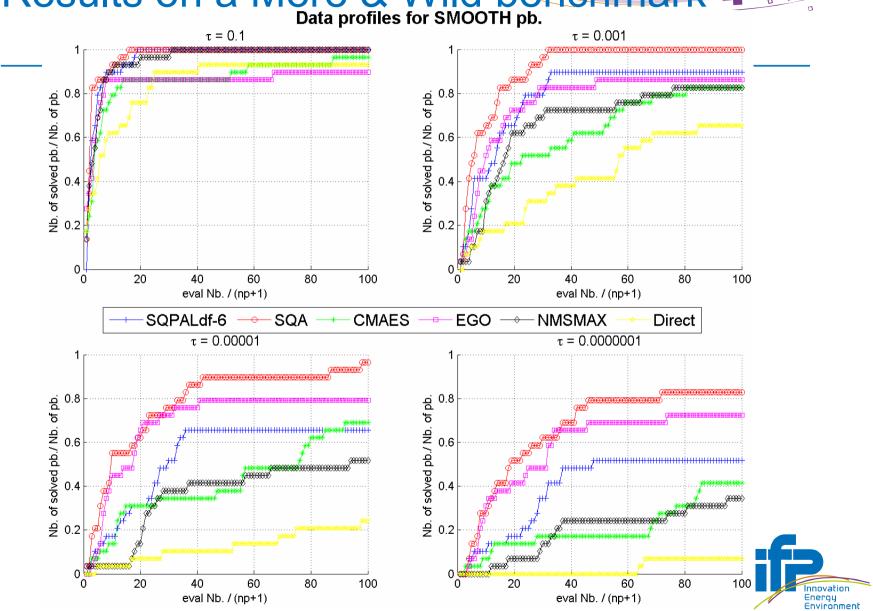
Comparison between

SQA	Local quadratic model in a trust region
SQPAL	SQP method using gradient approached by finite differences
EGO	kriging with Expected Improvement
CMAES	Genetic Algorithm
NMSMAX	Nelder Mead Simplex
Direct	Pattern Search

Results on a More & Wild benchmark Performances profiles for SMOOTH pb.



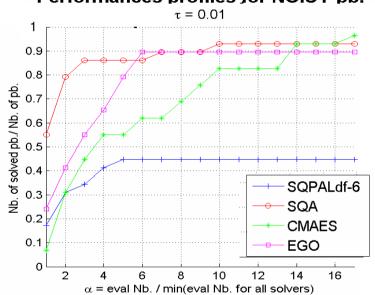
Results on a More & Wild benchmark Data profiles for SMOOTH pb.



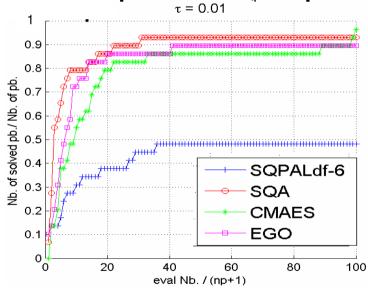
Results on a More & Wild benchmark

$noise = 10^{-2}$

Performances profiles for NOISY pb.

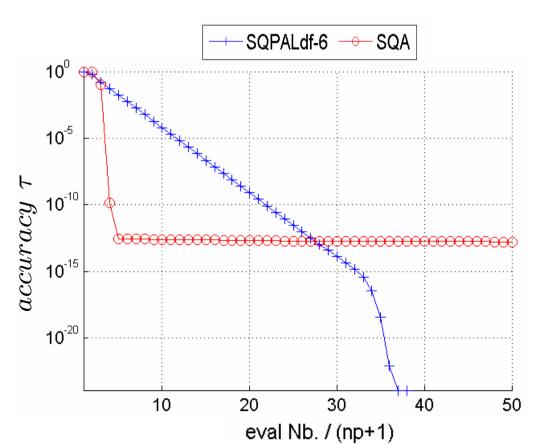


Data profiles for NOISY pb.



Example in high dimension

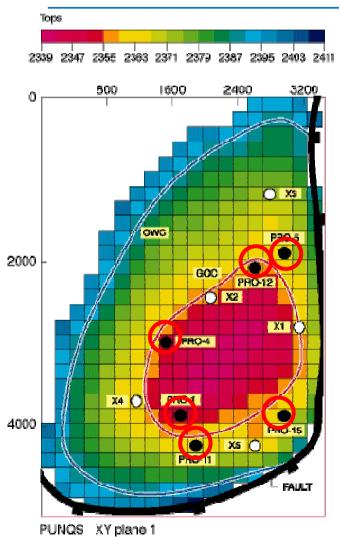
dimension n = 100



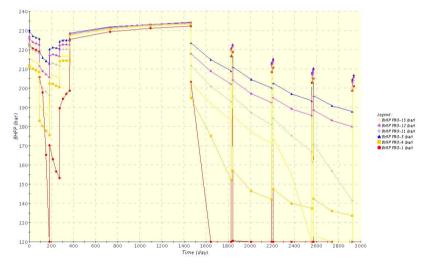
vardim example

$$f(x) = \sum_{i=1}^{n} (x_i - 1)^2 + (\sum_{i=1}^{n} ix_i - \frac{n(n+1)}{2})^2 + (\sum_{i=1}^{n} ix_i - \frac{n(n+1)}{2})^4$$

Results on reservoir application



Data: production data from 6 wells
778 measurements (3 per well at 41 ≠ days)



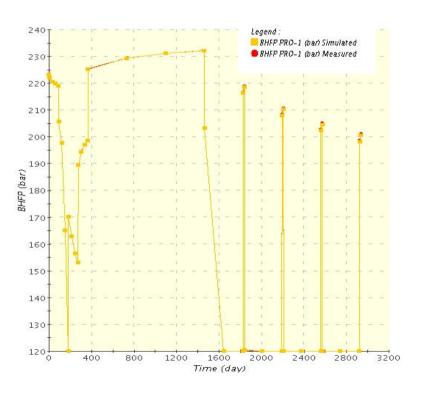
Environment

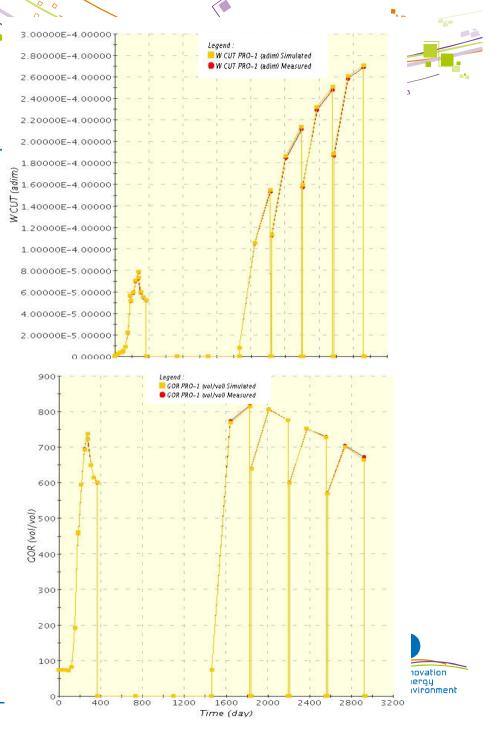
Parameters: 10 or 40

- geostatistical parameters (10)
- rocks properties (30)

Results on reservoir application

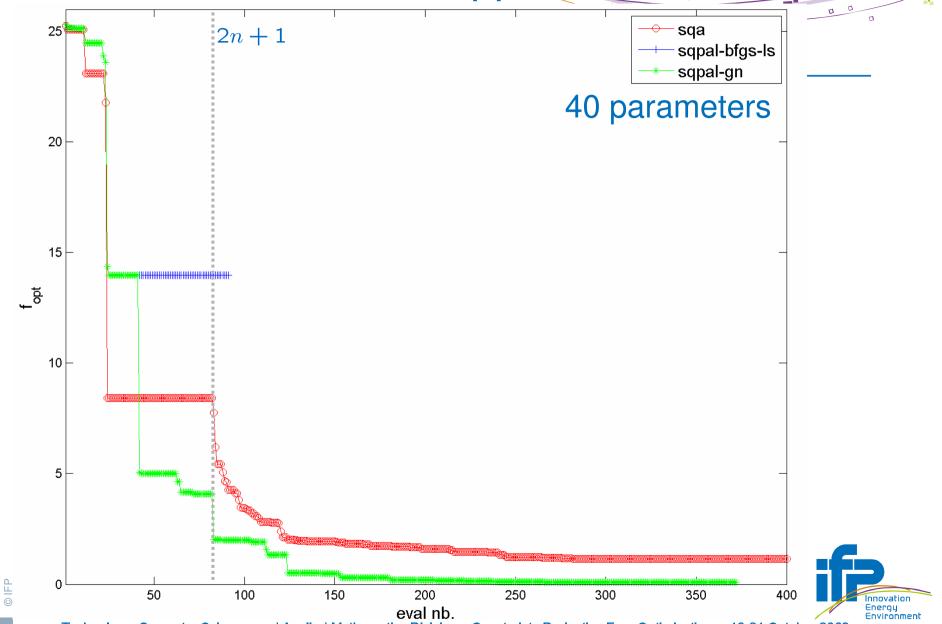
10 parameters





Results on reservoir application sqa 2n + 1sqpal-bfgs-ls 0.05 sqpal-gn 10 parameters 0.045 0.04 0.035 0.03 0.025 0.02 0.015 \$ 0.01 0.005 10 20 30 40 50 60 70 80 90 eval nb. Energy Environment Technology, Computer Science, and Applied Mathematics Division - Constraints Derivative Free Optimization - 18-21 October 2009

Results on reservoir application



Conclusions and outlook

SQA

- Very efficient method for optimization without derivatives
 - SQA better than EGO and SQPAL (Finite differences) on test cases
 - SQA can deal examples of more than 100 parameters (≠ EGO)
 - extension of SQA to nonlinear constraints (with derivatives)
- First results promising on the application in reservoir characterization.
 - Next step: test with constraints

Outlook

- adapt SQA to take into account nonlinear constraints without derivatives available (for other applications: engine calibration)
- adapt SQA for least square problems (inverse problems)
 Zhang, Conn, Scheinberg, 2009, A Derivative Free Algorithm for the least-square minimization

