Réunion annuelle du GdR MOA - Mathématiques de l'Optimisation et Applications Ile de Porquerolles, France
 18-21 octobre 2009

PROJECTION METHODS IN SEMIDEFINITE PROGRAMMING

Jérôme MALICK

CNRS, Lab. Jean Kunztmann, Grenoble

There exists an explicit expression for the projection of a symmetric matrix onto the cone of positive semidefinite matrices. In general though, the projections on the subsets of this cone are not explicit; but they are still easy to compute using methods of convex optimization.

In this presentation, I will first review these numerical methods, insisting on the dual method introduced in [1], that has then opened the way for further developments (both theoretical and practical $[2,3]$). Next, I will explain how these projections allow to set up a new family of algorithms [4] for solving semidefinite programming problems by using a proximal approach. I will give numerical illustrations on challenging problems, like computing the nearest correlation matrix, computing the Lovasz theta number of big graphs, and solving the relaxations of frequency assignment problems.

References

[1] J. Malick, A dual approach for semidefinite least-squares problems, SIAM Journal on Matrix Analysis and Applications, 26(1) (2004).
[2] J. Malick and H. Sendov, Clarke generalized Jacobian of the projection onto the cone of positive semidefinite matrices, Set-Valued Analysis, 14(3) (2006).
[3] H. Qi and D. Sun, Quadratic convergence and numerical experi- ments of Newton's method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28(2) (2006).
[4] J. Malick, J. Povh, F. Rendl and A. Wiegele, Regularization methods for semidefinite programming, SIAM Journal on Optimization, 20(1) (2009).

