PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal A	gorithm for data restoration		1/22

Parallel ProXimal Algorithm for data restoration

C. Chaux, J.-C. Pesquet and N. Pustelnik

Lab. IGM - Université Paris-Est

Porquerolles, October 19-21, 2009

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXimal Algorithm	for data restoration		2/22

nD data restoration

- We observe an image $z \in \mathbb{R}^M$ degraded by
 - ► a linear operator *T* (e.g. a blur)
 - ► a noise (e.g. Gaussian, Poisson noise)

$$z = T\overline{y} + w$$

• Objective: restore the unknown original image $\bar{y} \in \mathbb{R}^N$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			3/22

Outline

- 1. Parallel ProXimal Algorithm (PPXA)
- 2. **PPXA for image restoration** : proximity operator associated to linear degradation model and some class of discrete approximation of TV.
- 3. Accelerated PPXA
- 4. Conclusion

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
●00	0000000000	0000	0
Parallel ProXimal	Algorithm for data restoration		4/22

Convex optimization

 $\begin{array}{l} \mbox{Minimization problem}\\ \mbox{Find} & \min_{\xi \in \mathcal{H}} & \sum_{j=1}^{J} f_j(\xi)\\ \mbox{where } (f_j)_{1 \leq j \leq J} \mbox{ be functions in the class } \Gamma_0(\mathcal{H}).\\ \mbox{This criterion can be non differentiable.} \end{array}$

J = 2: \implies a Bayesian interpretation can be formulated letting f_1 be a data fidelity term and f_2 an a priori term.

- Forward-Backward algorithm f₁ or f₂ is β-Lipschitz differentiable (β ∈]0, +∞[) [Figueiredo and Nowak, 2003][Bect et al., 2004][Daubechies et al., 2004][Combettes and Wajs, 2005][Chaux et al., 2007],...
- Douglas-Rachford algorithm [Lions and Mercier, 1979] [Eckstein and Bertsekas, 1992][Combettes and Pesquet, 2007]

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
●OO	000000000	0000	0
Parallel ProXimal Algorithm	for data restoration		4/22

Convex optimization

 $\begin{array}{l} \mbox{Minimization problem}\\ \mbox{Find} & \mbox{min}_{\xi \in \mathcal{H}} & \sum_{j=1}^J f_j(\xi)\\ \mbox{where} & (f_j)_{1 \leq j \leq J} \mbox{ be functions in the class } \Gamma_0(\mathcal{H}).\\ \mbox{This criterion can be non differentiable.} \end{array}$

J = 3: the problem can be $\min_{\xi \in \mathcal{H}} f_1(\xi) + f_2(\xi) + \iota_C(\xi)$

- Nested algorithms
 β-Lipschitz differentiability of f₁ or f₂
 [Dupé et al., 2008][Chaux et al., 2009]
- $J \ge 3$ and no $(f_j)_{1 \le j \le J}$ is β -Lipschitz differentiable
 - Parallel ProXimal Algorithm (PPXA) [Combettes and Pesquet, 2008]

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algo	rithm for data restoration		5/22

PPXA : $\min_{\xi \in \mathcal{H}} \sum_{j=1}^{J} f_j(\xi)$

Initialization

Set
$$\gamma \in]0, +\infty[$$
.
Set $(\omega_j)_{1 \le j \le J} \in]0, 1]^J$ such that $\sum_{j=1}^J \omega_j = 1$.
Set $(u_{j,0})_{1 \le j \le J} \in (\mathcal{H})^J$ and $\xi_0 = \sum_{j=1}^J \omega_j u_{j,0}$.

Iterations [Combettes and Pesquet, 2008]

$$\begin{array}{lll} \mbox{For } \ell = 0, 1, \dots & \mbox{Prox. computation} \\ \mbox{For } j = 1, \dots, J & \mbox{Prox. computation} \\ \mbox{\lfloor $p_{j,\ell} = \operatorname{prox}_{\gamma f_j/\omega_j} u_{j,\ell} + a_{j,\ell}$} & \leftarrow \mbox{with possible errors} \\ \mbox{$p_{\ell} = \sum_{j=1}^{J} \omega_j p_{j,\ell}$} & \leftarrow \mbox{Weighted sum} \\ \mbox{Set } \lambda_{\ell} \in]0,2[& & \\ \mbox{For } j = 1, \dots, J \\ \mbox{\lfloor $u_{j,\ell+1} = u_{j,\ell} + \lambda_{\ell}$} (2 \ p_{\ell} - \xi_{\ell} - p_{j,\ell})$} & \leftarrow \mbox{Update} \\ \mbox{$\xi_{\ell+1} = \xi_{\ell} + \lambda_{\ell}$} (p_{\ell} - \xi_{\ell})$} & \leftarrow \mbox{Update} \\ \end{array}$$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			6/22

PPXA : convergence

The sequence $(\xi_{\ell})_{\ell \ge 1}$ generated by the PPXA can be shown to converge weakly to a minimizer of $\sum_{j=1}^{J} f_j$ under the following assumption [Combettes and Pesquet, 2008].

1.
$$\lim_{\|\xi\|\to+\infty} f_1(\xi) + \ldots + f_J(\xi) = +\infty.$$

2. dom
$$f_1 \cap \bigcap_{j=2}^J$$
 int dom $f_j \neq \emptyset$.

3.
$$(\forall j \in \{1, \ldots, J\}) \sum_{\ell \in \mathbb{N}} \lambda_{\ell} \|\mathbf{a}_{j,\ell}\| < +\infty.$$

4.
$$\sum_{\ell\in\mathbb{N}}\lambda_\ell (2-\lambda_\ell) = +\infty.$$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXi	mal Algorithm for data restoration		7/22

Convex optimization

Minimization problem

Find $\min_{\xi \in \mathcal{H}} \sum_{j=1}^{J} f_j(\xi)$ where $(f_j)_{1 \le j \le J}$ are in the class $\Gamma_0(\mathcal{H})$.

► *f_j* can be related to noise

►
$$\forall y \in \mathbb{R}^N$$
, $f_j(y) = \frac{1}{2\sigma^2} ||Ty - z||^2$ for Gaussian noise

►
$$\forall y \in \mathbb{R}^N$$
, $f_j(y) = D_{KL}(Ty, z)$ for Poisson noise

- ► *f_j* can be related to a constraint
 - ► $\forall y \in \mathbb{R}^N$, $f_j(y) = \iota_C(y)$ where $C = [0, 255]^N$ (pixel range constraint)

• f_j can be related to some a priori on the target solution

∀y ∈ ℝ^N, f_j(y) = ||y||₂² for Tikhonov regularization
∀y ∈ ℝ^N, f_j(y) = tv(y) for total variation regularization
∀y ∈ ℝ^N, f_j(y) = ||y||₁ to promote sparsity

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXi	mal Algorithm for data restoration		7/22

Convex optimization

Minimization problem

Find $\min_{\xi \in \mathcal{H}} \sum_{j=1}^{J} f_j(\xi)$ where $(f_j)_{1 \le j \le J}$ are in the class $\Gamma_0(\mathcal{H})$.

► *f_j* can be related to noise

►
$$\forall y \in \mathbb{R}^N$$
, $f_j(y) = \frac{1}{2\sigma^2} ||Ty - z||^2$ for Gaussian noise

►
$$\forall y \in \mathbb{R}^N$$
, $f_j(y) = D_{KL}(Ty, z)$ for Poisson noise

► *f_j* can be related to a constraint

▶ $\forall y \in \mathbb{R}^N$, $f_j(y) = \iota_C(y)$ where $C = [0, 255]^N$ (pixel range constraint)

f_j can be related to some a priori on the target solution

- $\forall y \in \mathbb{R}^N$, $f_j(y) = \|y\|_2^2$ for Tikhonov regularization
- ► $\forall y \in \mathbb{R}^N$, $f_j(y) = tv(y)$ for total variation regularization

▶ $\forall y \in \mathbb{R}^N$, $f_j(y) = \|y\|_1$ to promote sparsity

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXim	al Algorithm for data restoration		8/22

Frame representation

 $F^* \rightarrow F^*$

Frame coefficients (\overline{x})

Original (\overline{y})

- $\overline{x} \in \mathbb{R}^{K}$: Frame coefficients of original image $\overline{y} \in \mathbb{R}^{N}$
- ► $F^* : \mathbb{R}^K \to \mathbb{R}^N$: Tight frame synthesis operator such that $\exists \nu \in]0, +\infty[, F^* \circ F = \nu \mathrm{Id}]$

$$\bar{y} = F^* \overline{x}$$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			9/22

Motivations

Our objective is to take J > 2. Why ?

it allows us to mix constraints and regularization functions which has proved to be fruitful.

[Bect et al., 2004][Bioucas-Dias and Figueiredo, 2008][Combettes and Pesquet, 2008]

lack of regularity

Wavelet regularization Total variation regularization

staircase effects

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXima	al Algorithm for data restoration		10/22

Considered minimization problem

Our objective

$$\min_{x \in \mathbb{R}^{\kappa}} \quad d(TF^*x, z) + \kappa \operatorname{tv}(F^*x) + \iota_{\mathcal{C}}(F^*x) + \vartheta f(x)$$

where $\kappa > 0, \ \vartheta > 0.$

•
$$d(\cdot,z)\in \Gamma_0(\mathbb{R}^M)$$
: data fidelity term .

- ▶ tv: total variation term
- ▶ ι_C : indicator function of a closed convex set $C = [0, 255]^N$

►
$$\forall x = (x^{(k)})_{1 \le k \le K} \in \mathbb{R}^K$$
, $f(x) = \sum_{k=1}^K \phi_k(x^{(k)})$ where, for every $k \in \{1, ..., K\}$, ϕ_k is a finite function of $\Gamma_0(\mathbb{R})$ such that $\lim_{|x^{(k)}| \to +\infty} \phi_k(x^{(k)}) = +\infty$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXin	nal Algorithm for data restoration		10/22

Considered minimization problem

Our objective

$$\min_{x \in \mathbb{R}^{K}} \quad d(TF^{*}x, z) + \kappa \operatorname{tv}(F^{*}x) + \iota_{\mathcal{C}}(F^{*}x) + \vartheta f(x)$$

where $\kappa > 0, \ \vartheta > 0.$

- d(·, z) ∈ Γ₀(ℝ^M): data fidelity term .
 ⇒ No explicit proximity operator expression except when d is quadratic.
- tv: total variation term
 - \Rightarrow Proximity operators proposed for several forms of $\mathrm{tv}.$
- ► ι_C : indicator function of a closed convex set $C = [0, 255]^N$ $\Rightarrow P_C$.
- ∀x = (x^(k))_{1≤k≤K} ∈ ℝ^K, f(x) = ∑_{k=1}^K φ_k(x^(k)) where, for every k ∈ {1,...,K}, φ_k is a finite function of Γ₀(ℝ) such that lim_{|x^(k)|→+∞} φ_k(x^(k)) = +∞ ⇒ Explicit form.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			11/22

Proximity operator computation of $d(TF^*, z)$

$$\forall x \in \mathbb{R}^{K}, \ d(TF^*x, z) = \Psi(TF^*x) = \sum_{m=1}^{M} \psi_m((TF^*x)^{(m)})$$

▶ $\forall m \in \{1, ..., M\}$, explicit form for $prox_{\psi_m} \Rightarrow \mathsf{Explicit}$ form for $prox_{\psi}$

• How to circumvent $prox_{\Psi \circ T \circ F^*}$?

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXimal Algorithm for data restoration			11/22

Proximity operator computation of $d(TF^*, z)$

$$\forall x \in \mathbb{R}^{K}, \ d(TF^{*}x, z) = \Psi(TF^{*}x) = \sum_{m=1}^{M} \psi_{m}((TF^{*}x)^{(m)})$$

- ▶ $\forall m \in \{1, ..., M\}$, explicit form for $\operatorname{prox}_{\psi_m} \Rightarrow$ Explicit form for $\operatorname{prox}_{\psi}$
- How to circumvent $prox_{\psi \circ T \circ F^*}$?

Proposition

- \mathcal{H} and \mathcal{G} : real separable Hilbert spaces.
- $(e_m)_{m \in \mathbb{K}}$ an orthonormal basis of \mathcal{G} such that $(\forall u \in \mathcal{G}), \Phi(u) = \sum_{m \in \mathbb{K}} \varphi_m(\langle u, e_m \rangle)$ where $(\varphi_m)_{m \in \mathbb{K}} \in \Gamma_0(\mathbb{R})$.
- $L: \mathcal{H} \to \mathcal{G}$: bounded linear operator
- Suppose that the composition of L and L^{*} is an isomorphism which is diagonalized by (e_m)_{m∈K} (i.e. (∀m ∈ K) L ∘ L^{*} e_m = d_me_m)

then, $\operatorname{prox}_{\Phi \circ L} = \operatorname{Id} + L^* \circ (\operatorname{prox}_{D^{-1}\Phi(D^{\cdot})} - \operatorname{Id}) \circ D^{-1} \circ L.$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Alg	orithm for data restoration		11/22

Proximity operator computation of $d(TF^*, z)$

$$\forall x \in \mathbb{R}^{K}, \ d(TF^{*}x, z) = \Psi(TF^{*}x) = \sum_{m=1}^{M} \psi_{m}((TF^{*}x)^{(m)})$$

- ▶ $\forall m \in \{1, ..., M\}$, explicit form for $prox_{\psi_m} \Rightarrow \mathsf{Explicit}$ form for $prox_{\Psi}$
- How to circumvent $prox_{\psi \circ T \circ F^*}$?

Proposition

- \mathcal{H} and \mathcal{G} : real separable Hilbert spaces.
- $(e_m)_{m \in \mathbb{K}}$ an orthonormal basis of \mathcal{G} such that $(\forall u \in \mathcal{G}), \Phi(u) = \sum_{m \in \mathbb{K}} \varphi_m(\langle u, e_m \rangle)$ where $(\varphi_m)_{m \in \mathbb{K}} \in \Gamma_0(\mathbb{R})$.
- $L: \mathcal{H} \to \mathcal{G}$: bounded linear operator
- ▶ Suppose that the composition of *L* and *L*^{*} is an isomorphism which is diagonalized by $(e_m)_{m \in \mathbb{K}}$ (*i.e.* $(\forall m \in \mathbb{K})$ $\underbrace{L \circ L^*}_{e_m} e_m = d_m e_m$)

then, $\operatorname{prox}_{\Phi \circ L} = \operatorname{Id} + L^* \circ (\operatorname{prox}_{D^{-1}\Phi(D \cdot)} - \operatorname{Id}) \circ D^{-1} \circ L.$

- ▶ If $L = TF^*$ with T = Id and $F^* \circ F = \nu Id \Rightarrow$ Proposition can be used
- If L = TF* with T ≠ Id and F* F = νId ⇒ Problem: (TF*) (TF*)* is non necessarily diagonalized in the canonical basis of ℝ^M

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXin	nal Algorithm for data restoration		12/22

Example: 1D periodic convolution

For a kernel size equal to 3,

 $T \circ T^* \neq D$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			12/22

Example: 1D periodic convolution

$$T_1 \circ T_1^* = \sum_{q=0}^2 |\theta_q|^2 \mathrm{Id}$$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXimal Algorithm for data restoration			12/22

Example: 1D periodic convolution

PPXA 000	PPXA for image recovery Accelerated PPXA 00000000000 0000	Conclusion O
Parallel ProXimal Algo	orithm for data restoration	12/22
Example:	1D periodic convolution	
	$T_3 \circ T_3^* = \sum_{q=0}^2 $	$\theta_q ^2 \mathrm{Id}$
	$ \begin{bmatrix} \theta_2 & \theta_1 & \theta_0 & 0 & \cdots & 0 \\ 0 & \theta_2 & \theta_1 & \theta_0 & 0 & \vdots \end{bmatrix} $	
	\vdots 0 θ_2 θ_1 θ_0 0 T_2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
T =		
	$0 \hspace{0.1in} \theta_2 \hspace{0.1in} \theta_1 \hspace{0.1in} \theta_0 \hspace{0.1in} 0$	
	$0 \qquad 0 \theta_2 \theta_1 \theta_0$	
	$\left \begin{array}{ccc} \theta_0 & 0 \end{array} \right $ 0 $\left \begin{array}{ccc} \theta_2 & \theta_1 \end{array} \right $	
	$\begin{bmatrix} \theta_1 & \theta_0 & 0 & \cdots & 0 & \theta_2 \end{bmatrix}$	

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			13/22

Proximity operator computation of $\Psi(TF^*)$.

- Notations:
 - $(\mathbb{I}_i)_{1 \le i \le I}$ is a partition of $\{1, \ldots, M\}$ in nonempty sets
 - $\forall i \in \{1, \dots, I\}$, M_i denotes the number of elements in \mathbb{I}_i
 - $\blacktriangleright \ \Upsilon_i : \mathbb{R}^{M_i} \to]0, +\infty[: (\eta^{(m)})_{m \in \mathbb{I}_i} \mapsto \sum_{m \in \mathbb{I}_i} \psi_m(\eta^{(m)})$
- ▶ We have then $\Psi \circ T \circ F^* = \sum_{i=1}^{I} \Upsilon_i \circ T_i \circ F^*$ where T_i is the linear operator from \mathbb{R}^N to \mathbb{R}^{M_i} associated with the matrix $[t_{m_1}, \cdot, t_{m_{M_i}}]^\top$ with $\mathbb{I}_i = \{m_1, \ldots, m_{M_i}\}.$

Particular case of Periodic Convolution: For all $i \in \{1, ..., I\}$, $(t_m)_{m \in \mathbb{I}_i}$ is a family of non zero orthogonal vectors such that $T_i \circ T_i^* = \sigma_i \text{Id}$ where $\sigma_i = \sum_{q_1=0}^{Q_1-1} \sum_{q_2=0}^{Q_1-1} |\theta_{q_1,q_2}|^2$. For $F^* \circ F = \nu \text{Id}$ (tight-frame) and $\forall i \in (1, ..., I)$, $prox_{\gamma_i \circ T_i \circ F^*} = \text{Id} + \frac{F \circ T_i^*}{\nu \sigma_i} \circ (prox_{\nu \sigma_i \gamma_i} - \text{Id}) \circ T_i \circ F^*$.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	00000000000	0000	0
Parallel ProXima	al Algorithm for data restoration		14/22

Proximity operator computation of $\Psi(TF^*)$.

Complexity:

$$\mathrm{prox}_{\Upsilon_i \circ \mathcal{T}_i} = \mathrm{Id} + \mathcal{T}_i^* \circ (\mathrm{prox}_{D_i^{-1} \varPhi(D_i \cdot)} - \mathrm{Id}) \circ D_i^{-1} \circ \mathcal{T}_i$$

If we have Q proximity operators to compute:

- Complexity of each T_i and T_i^* : O(N)
- Complexity of $\operatorname{prox}_{D_i^{-1}\Upsilon_i(D_i\cdot)}$: $O(M_i)$
- Q proximity operators $\operatorname{prox}_{\Upsilon_i \circ T_i}$: $O(Q(2N + M_i)) = O(N(2Q + 1))$

• If we have M proximity operators to compute (when $M \sim N$):

- Complexity of each T_i and T_i^* : O(Q)
- Complexity of $\operatorname{prox}_{D_i^{-1}\Upsilon_i(D_i)}$: O(1)
- *N* proximity operators $\operatorname{prox}_{\Upsilon_i \circ \mathcal{T}_i}$: O(N(2Q+1))

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	00000000000	0000	0
Parallel ProXimal A	gorithm for data restoration		14/22

Proximity operator computation of $\Psi(TF^*)$.

Initialization

Set
$$\gamma \in]0, +\infty[$$
.
Set $(\omega_j)_{1 \le j \le J} \in]0, 1]^J$ such that $\sum_{j=1}^J \omega_j = 1$.
Set $(u_{j,0})_{1 \le j \le J} \in (\mathbb{R}^K)^J$ and $\xi_0 = \sum_{j=1}^J \omega_j u_{j,0}$.

Iterations [Combettes and Pesquet, 2008]

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	00000000000	0000	0
Parallel ProXim	nal Algorithm for data restoration		15/22

Considered minimization problem

Our objective

$$\min_{x \in \mathbb{R}^{K}} \quad d(TF^{*}x, z) + \kappa \operatorname{tv}(F^{*}x) + \iota_{\mathcal{C}}(F^{*}x) + \vartheta f(x)$$

where $\kappa > 0, \ \vartheta > 0.$

- *d*(·, *z*): data fidelity term.
 ⇒ No explicit proximity operator expression except when *d* is quadratic.
- tv: total variation term
 - \Rightarrow Proximity operators proposed for several forms of $\mathrm{tv}.$
- ► ι_C : indicator function of a closed convex set $C = [0, 255]^N$ $\Rightarrow P_C$.
- ∀x = (x^(k))_{1≤k≤K} ∈ ℝ^K, f(x) = ∑_{k=1}^K φ_k(x^(k)) where, for every k ∈ {1,...,K}, φ_k is a finite function of Γ₀(ℝ) such that lim_{|x^(k)|→+∞} φ_k(x^(k)) = +∞ ⇒ Explicit form.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXima	al Algorithm for data restoration		16/22

Proximity operator associated to various TV discretization

 $\frac{\text{Total variation of a digital image}}{y = (y_{n_1, n_2})_{0 \le n_1 < N_1, 0 \le n_2 < N_2} \in \mathbb{R}^{N_1 \times N_2}:} \\
\text{tv}(y) = \sum_{n_1=0}^{N_1 - P_1} \sum_{n_2=0}^{N_2 - P_2} \rho_{\text{tv}}((y_h)_{n_1, n_2}, (y_v)_{n_1, n_2}), \quad (1)$

ρ_{tv} ∈ Γ₀(ℝ²) (ex. ρ_{tv}(·, ·) = √|·|² + |·|², ρ_{tv}(·, ·) = |·| + |·|)
 H ∈ ℝ^{P₁×P₂} and V ∈ ℝ^{P₁×P₂} are the filter kernel matrices
 Y_{n1,n2} = (y_{n1+p1,n2+p2})_{0≤p1<P1,0≤p2<P2}
 (y_h)_{n1,n2} = tr(H^TY_{n1,n2}) and (y_v)_{n1,n2} = tr(V^TY_{n1,n2})

Proximity operator for split $\operatorname{tv}(y) = \sum_{p_1=0}^{P_1-1} \sum_{p_2=0}^{P_2-1} \operatorname{tv}_{p_1,p_2}(y)$

- ▶ Possible when $tr(HV^{\top}) = 0$ and $||H||_F^2 = ||V||_F^2 = \tau > 0$
- Examples: Haar, Finite difference, Prewitt, Sobel.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	000000000	0000	0
Parallel ProXima	I Algorithm for data restoration		17/22

Results

► CPU time

Image size	128 imes 128		256 imes 256		512 imes 512	
Kernel blur size	3×3	7×7	3×3	7×7	3×3	7×7
Iteration numbers	30	50	41	50	50	50

High computational time due to the number of F and F* to compute at each iteration.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	●000	0
Parallel ProXimal Alg	orithm for data restoration		18/22
PPXA	$\min_{x \in \mathbb{R}^K} \sum_{j=1}^J f_j(x)$	<)	

For
$$\ell = 0, 1, ...$$

For $j = 1, ..., J$
 $\lfloor p_{j,\ell} = \operatorname{prox}_{\gamma f_j/\omega_j} u_{j,\ell} + a_{j,\ell}$
 $p_\ell = \sum_{j=1}^J \omega_j p_{j,\ell}$
Set $\lambda_\ell \in]0, 2[$
For $j = 1, ..., J$
 $\lfloor u_{j,\ell+1} = u_{j,\ell} + \lambda_\ell (2 p_\ell - x_\ell - p_{j,\ell})$
 $x_{\ell+1} = x_\ell + \lambda_\ell (p_\ell - x_\ell)$

PPXA	PPXA for image re	ecovery Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Alg	orithm for data restoration		18/22
PPXA	$\min_{x \in \mathbb{R}^{K}} $	$\sum_{j=1}^{S} g_j(F^*x) + \sum_{j=S+1}^{J} f_j(x)$	

For
$$\ell = 0, 1, ...$$

For $j = 1, ..., S$
 $\lfloor p_{j,\ell} = \operatorname{prox}_{\nu\gamma/\omega_j g_j \circ F^*}(u_{j,\ell}) + a_{j,\ell}$
For $j = S + 1, ..., J$
 $\lfloor p_{j,\ell} = \operatorname{prox}_{\gamma f_j/\omega_j} u_{j,\ell} + a_{j,\ell}$
 $p_\ell = \sum_{j=1}^J \omega_j p_{j,\ell}$
Set $\lambda_\ell \in]0, 2[$
For $j = 1, ..., J$
 $\lfloor u_{j,\ell+1} = u_{j,\ell} + \lambda_\ell (2 p_\ell - x_\ell - p_{j,\ell})$
 $x_{\ell+1} = x_\ell + \lambda_\ell (p_\ell - x_\ell)$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algo	rithm for data restoration		19/22

$$\min_{x\in\mathbb{R}^{K}} \sum_{j=1}^{S} g_j(F^*x) + \sum_{j=S+1}^{J} f_j(x)$$

For
$$\ell = 0, 1, ...$$

For $j = 1, ..., S$
 $\downarrow \quad p_{j,\ell} = \quad u_{j,\ell} + \frac{1}{\nu} \quad F(\operatorname{prox}_{\nu\gamma/\omega_j g_j}(F^*u_{j,\ell}) - F^*u_{j,\ell}) + \quad a_{j,\ell}$
For $j = S + 1, ..., J$
 $\downarrow \quad p_{j,\ell} = \operatorname{prox}_{\gamma f_j/\omega_j} u_{j,\ell} + a_{j,\ell}$
 $p_\ell = \sum_{j=1}^J \omega_j p_{j,\ell}$
Set $\lambda_\ell \in]0, 2[$
For $j = 1, ..., J$
 $\downarrow \quad u_{j,\ell+1} = u_{j,\ell} + \lambda_\ell (2 \ p_\ell - x_\ell - p_{j,\ell})$
 $x_{\ell+1} = x_\ell + \lambda_\ell (p_\ell - x_\ell)$

• Large number of F and F^* to compute

PPXA

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			19/22

$$\min_{x\in\mathbb{R}^{K}} \sum_{j=1}^{S} g_j(F^*x) + \sum_{j=S+1}^{J} f_j(x)$$

For
$$\ell = 0, 1, ...$$

For $j = 1, ..., S$
 $\lfloor F^* p_{j,\ell} = F^* u_{j,\ell} + \frac{1}{\nu} F^* F(\operatorname{prox}_{\nu\gamma/\omega_j g_j}(F^* u_{j,\ell}) - F^* u_{j,\ell}) + F^* a_{j,\ell}$
For $j = S + 1, ..., J$
 $\lfloor p_{j,\ell} = \operatorname{prox}_{\gamma f_j/\omega_j} u_{j,\ell} + a_{j,\ell}$
 $p_\ell = \sum_{j=1}^J \omega_j \overline{p_{j,\ell}}$
Set $\lambda_\ell \in]0, 2[$
For $j = 1, ..., J$
 $\lfloor u_{j,\ell+1} = u_{j,\ell} + \lambda_\ell (2 \overline{p_\ell} - x_\ell - \overline{p_{j,\ell}})$
 $x_{\ell+1} = x_\ell + \lambda_\ell (\overline{p_\ell} - x_\ell)$

• Decompose as $p_{j,\ell} = Fq_{j,\ell} + p_{j,\ell}^{\perp}$

PPXA

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			20/22

Accelerated PPXA

For
$$\ell = 0, 1, ...$$

For $j = 1, ..., S$
 $\lfloor q_{j,\ell} = \frac{1}{\nu} \operatorname{prox}_{\nu\gamma/\omega_j g_j} v_{j,\ell} + \widetilde{a}_{j,\ell}$
For $j = S + 1, ..., J$
 $\lfloor p_{j,\ell} = \operatorname{prox}_{\gamma/\omega_j f_j} u_{j,\ell} + A_{j,\ell}$
 $p_{\ell} = \sum_{j=1}^{S} \omega_j u_{j,\ell}^{\perp} + F \sum_{j=1}^{S} \omega_j q_{j,\ell} + \sum_{j=S+1}^{J} \omega_j p_{j,\ell}$
 $r_{\ell} = 2 p_{\ell} - x_{\ell}; \quad \widetilde{r}_{\ell} = F^* r_{\ell}; \quad r_{\ell}^{\perp} = r_{\ell} - \frac{1}{\nu} F \widetilde{r}_{\ell}$
Set $\lambda_{\ell} \in]0, 2[$
For $j = 1, ..., S$
 $\lfloor u_{j,\ell+1}^{\perp} = u_{j,\ell}^{\perp} + \lambda_{\ell} (r_{\ell}^{\perp} - u_{j,\ell}^{\perp})$
 $\downarrow v_{j,\ell+1} = v_{j,\ell} + \lambda_{\ell} (\widetilde{r}_{\ell} - \nu q_{j,\ell})$
For $j = S + 1, ..., J$
 $\lfloor u_{j,\ell+1} = u_{j,\ell} + \lambda_{\ell} (r_{\ell} - p_{j,\ell})$
 $x_{\ell+1} = x_{\ell} + \lambda_{\ell} (p_{\ell} - x_{\ell})$

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	0
Parallel ProXimal Algorithm for data restoration			21/22

Results

Image size	128 >	< 128	256 >	< 256	512 >	< 512
Kernel blur size	3×3	7×7	3×3	7×7	3×3	7×7
Iteration numbers	30	50	41	50	50	50
CPU time (s)	117.2	633.0	411.7	1298	1458	4514
CPU time	13.53	29.82	60.59	89.48	263.6	405.0
acc. version (s)						
Gain	8.67	21.2	6.79	14.5	5.53	11.1

Table: Comparisons between PPXA and its accelerated version.

PPXA	PPXA for image recovery	Accelerated PPXA	Conclusion
000	0000000000	0000	•
Parallel ProXimal Algorithm for data restoration			22/22

Conclusion

- Adaptation of PPXA for a large class of image recovery problems.
- Convergence of accelerated PPXA.
- Parallel implementation of PPXA / acc. PPXA on 8 core processor with OpenMP
- Future work: GPU implementation