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An Optimal Control Problem

Vt(y0) := inf
u∈U

1

t

∫ t

s=0
h(y(s, u, y0), u(s))ds,

where s 7→ y(s, u, y0) denotes the solution to

y′(s) = g(y(s), u(s)), y(0) = y0.

g : IRd × U → IRd Lipschitz, U compact, g h bounded.

PROBLEM : Existence of a limit of Vt(y0) as t→ +∞.

No ergodicity condition here (Lions-Papanicolaou- Varad-
han, Arisawa-Lions, Bettiol, Alvarez-Bardi Capuzzo-Dolcetta,
Artstein-Gaitsgory, ...)The limit may depend on the initial
condition
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Introduction

Definition 1 The problem Γ(y0) := (Γt(y0))t>0 has a limit
value if

V (y0) := lim
t→∞

Vt(y0) = lim
t→∞

inf
u∈U

1

t

∫ t

s=0
h(y(s, u, y0), u(s))ds.

Definition 2 The problem Γ(y0) has a uniform value if it
has a limit value V (y0) and if:

∀ε > 0,∃u ∈ U ,∃t0,∀t ≥ t0,
1

t

∫ t

s=0
h(y(s, u, y0), u(s))ds ≤ V (y0) + ε.



Examples

• Example 1: here y ∈ IR2 (seen as the complex plane
i2 = −1), there is no control

y′(t) = i y(t),

Vt(y0) −−−→
t→∞

1

2π|y0|

∫
|z|=|y0|

h(z)dz,

and since there is no control, the value is uniform.

• Example 2: in the complex plane again, but now g(y, u) =
i y u, where u ∈ U a given bounded subset of IR, and h is
continuous in y.



• Example 3: g(y, u) = −y+u, where u ∈ U a given bounded
subset of IRd, and h is continuous in y.
• Example 4: in IR2. The initial state is y0 = (0, 0) and
U = [0, 1], and the cost is h(y) = 1− y1(1− y2).

y′(s) = g(y(s), u(s)) =

(
u(s)(1− y1(s))

u2(s)(1− y1(s))

)
.

One can easily observe that the reachable set G(y0) ⊂ [0, 1]2.

If u = ε > 0 constant, y1(t) = 1 − exp(−εt) and y2(t) = εy1(t).
So we have Vt(y0) −−−→

t→∞
0. Existence of a Uniform Value

No ergodicity :

{y ∈ [0, 1]2, lim
t→∞

Vt(y) = lim
t→∞

Vt(y0)} = [0, 1]× {0},

and starting from y0 it is possible to reach no point in
(0, 1]× {0}.



Examples

• Example 5: in IR2, y0 = (0, 0), control set U = [0, 1],
y′(t) = (y2(t), u(t)), and h(y1, y2) = 0 if y1 ∈ [1, 2], = 1 otherwise.

We have u(s) = y′2(s) = y′′1 (s),

Interpretation: u ”acceleration”, y2 ”speed”, y1 the ”po-
sition”.

If u = ε constant, then y2(t) =
√

2εy1(t) ∀t ≥ 0.

Limit Value: VT (y0) −−−−→
T→∞

1/2

No Uniform Value.



Assumptions and Notations


The function h : IRd × U −→ IR is measurable and bounded

∃L ≥ 0,∀(y, y′) ∈ IR2d,∀u ∈ U, ‖g(y, u)− g(y′, u)‖ ≤ L‖y − y′‖
∃a > 0,∀(y, u) ∈ IRd × U, ‖g(y, u)‖ ≤ a(1 + ‖y‖)

Average cost induced by u between 0 and t by:

γt(y0, u) :=
1

t

∫ t

0
h(y(s, u, y0), u(s))ds

The corresponding Value function satisfies Vt(y0) = infu∈U γt(y0, u).

for m ≥ 0, γm,t(y0, u) :=
1

t

∫ m+t

m
h(y(s, u, y0), u(s))ds,
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A Technical Lemma

We define V −(y0) := lim inft→+∞ Vt(y0), V +(y0) := lim supt→+∞ Vt(y0).

Lemma 3 For every m0 in IR+, we have:

sup
t>0

inf
m≤m0

Vm,t(y0) ≥ V +(y0) ≥ V −(y0) ≥ sup
t>0

inf
m≥0

Vm,t(y0).

Sketch of the Proof: We first prove supt>0 infm≤m0 Vm,t(y0) ≥
V +(y0). Suppose by contradiction that ∃ε > 0 ∀t > 0 we
have infm≤m0 Vm,t(y0) ≤ V +(y0) − ε . Hence for any t > 0
there exists m ≤ m0 with Vm,t(y0) ≤ V +(y0) − (ε/2). Now
observe that

Vm,t(y0) ≥ m0 + t

t
Vm0+t(y0)− 2

m0

t
.

Passing to the limsup as t→ +∞ we obtain a contradiction.



We now prove V −(y0) ≥ supt>0 infm≤0 Vm,t(y0). Assume on
the contrary that it is false. Then there exists ε > 0 and
t > 0 such that V −(y0) + ε ≤ infm≤0 Vm,t(y0). So for any m ≥ 0,
we have V −(y0)+ε ≤ Vm,t(y0). We will obtain a contradiction
by concatenating trajectories.

Recall the result of the Lemma

sup
t>0

inf
m≤m0

Vm,t(y0) ≥ V +(y0) ≥ V −(y0) ≥ sup
t>0

inf
m≥0

Vm,t(y0),

and define

Definition 4

V ∗(y0) = sup
t>0

inf
m≥0

Vm,t(y0).



A first result in Nonexpansive case

Denote by G(y0) := {y(t, u, y0), t ≥ 0, u ∈ U} the reachable set

Theorem 5 (H’1) h(y, u) = h(y) only depends on the state,

(H’2) G(y0) is bounded,

(H’3) ∀(y1, y2) ∈ G(y0)2, supu∈U infv∈U < y1 − y2, g(y1, u) −
g(y2, v) >≤ 0.

Then Γ(y0) has a limit value Vt(y0) −−−−→
t→+∞

V ∗(y0). The con-

vergence of (Vt)t to V ∗ is uniform over G(y0), and we have

V ∗(y0) = supt≥1 infm≥0 Vm,t(y0) = infm≥0 supt≥1 Vm,t(y0) =
limm→∞,t→∞ Vm,t(y0). Moreover the value of Γ(y0) is uni-
form.



• Example 1: here y ∈ IR2 (seen as the complex plane
i2 = −1), there is no control

y′(t) = i y(t),

• Example 2: in the complex plane

y′(t) = i y(t) u(t)

, where u ∈ U a given bounded subset of IR, and h is con-
tinuous in y.

• Example 3: g(y, u) = −y+u, where u ∈ U a given bounded
subset of IRd, and h is continuous in y.



Sketch of the proof of the first result

Lemma 6 ∀T > 0,∀ε > 0,∀(y1, y2) ∈ G(y0)2,∀u ∈ U , ∃v ∈ U ,
∀t ∈ [0, T ], ‖y(t, u, y1)− y(t, v, y2)‖ ≤ ‖y1 − y2‖ + ε.

Proposition 7 ∀ε > 0,∃m0, sup
t>0

inf
m≤m0

Vm,t(y0) ≤ sup
t>0

inf
m≥0

Vm,t(y0) + 2ε

• (VT (y0))T>0 is equicontinuous (Lemma 6 +continuity of h)

• Define Gm(y0) := {y(t, u, y0), t ≤ m,u ∈ U} the reachable set
in time m.

∀ε,∃m0,∀z ∈ G(y0),∃z′ ∈ Gm0(y0) such that ‖z − z′‖ ≤ ε.

•We have infm≥0 Vm,t(y0) = inf{Vt(z), z ∈ G(y0)}, and infm≤m0 Vm,t(y0) =
inf{Vt(z), z ∈ Gm0(y0)}. By steps 1 and 2 inf{Vt(z), z ∈ Gm0(y0)} ≤
inf{Vt(z), z ∈ G(y0)} + 2ε.
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A Generalization

We put Z = G(y0), and Z̄ its closure

Theorem 8 (H1) h is uniformly continuous in y on Z̄ uni-
formly in u. And for each y in Z̄, either h does not depend
on u or the set {(g(y, u), h(y, u)) ∈ IRd×[0, 1], u ∈ U} is closed.

(H2): ∃∆ : IRd × IRd −→ IR+, vanishing on the diagonal
(∆(y, y) = 0) and symmetric (∆(y1, y2) = ∆(y2, y1) ), and a
function α̂ : IR+ −→ IR+ s.t. α̂(t) −−−→

t→0
0 satisfying:

a) ∀ sequence (zn)n ⊂ Z, ∀ε > 0, ∃n, lim infp∆(zn, zp) ≤ ε.

b) ∀(y1, y2) ∈ Z̄2, ∀u ∈ U, ∃v ∈ U such that
D ↑ ∆(y1, y2)(g(y1, u), g(y2, v)) ≤ 0, h(y2, v)− h(y1, u) ≤ α̂(∆(y1, y2)).

Then Γ(y0) has a uniform value limt→∞ Vt = V ∗.



Remarks

• First result corresponds to the case where: ∆(y1, y2) =

‖y1 − y2‖2, G(y0) is bounded, and h(y, u) = h(y) (one can just

take α̂(t) = sup{|h(x)− h(y)|, ‖x− y‖2 ≤ t}).
• • Although ∆ may not satisfy the triangular inequality
nor the separation property, it may be seen as a “distance”
adapted to the problem Γ(y0).

• D ↑ is the contingent epi-derivative (which reduces to
the upper Dini derivative if ∆ is Lipschitz) D↑∆(z)(α) =
lim inft→0+,α′→α

1
t(∆(z + tα′) − ∆(z)). If ∆ is differentiable,

the condition D ↑ ∆(y1, y2)(g(y1, u), g(y2, v)) ≤ 0 just reads:

< g(y1, u), ∂
∂y1

∆(y1, y2) > + < g(y2, v), ∂
∂y2

∆(y1, y2) >≤ 0.



• The assumption: “{(g(y, u), h(y, u)) ∈ IRd × [0, 1], u ∈ U}
closed” could be checked for instance if U is compact and
if h and g are continuous with respect to (y, u).

• H2a) is a precompacity condition. It is satisfied as soon
as G(y0) is bounded. cf Renault 2008

• Notice that H2 is satisfied with ∆ = 0 if we are in the
trivial case where infu h(y, u) is constant.

• Theorem 8 can be applied to example 4, with ∆(y1, y2) =
‖y1 − y2‖1 (L1-norm). In this example, we have for each y1,
y2 and u: ∆(y1 + tg(y1, u), y2 + tg(y2, u)) ≤ ∆(y1, y2) as soon as
t ≥ 0 is small enough.



Proposition 9 We have
∀(y1, y2) ∈ Z̄2, ∀T ≥ 0, ∀ε > 0,∀u ∈ U , ∃v ∈ U ,
∀t ∈ [0, T ], ∆(y(t, u, y1), y(t, v, y2)) ≤ ∆(y1, y2) + ε,
and for almost every t ∈ [0, T ],
h(y(t, v, y2), v(t))− h(y(t, u, y1), u(t)) ≤ α̂(∆(y(t, u, y1), y(t, v, y2))).

Corollary 10 For every y1 and y2 in G(y0), for all T > 0,

|VT (y1)− VT (y2)| ≤ α̂(∆(y1, y2)).

Lemma 11 For every ε > 0, there exists m0 in IR+ such
that:

∀z ∈ G(y0),∃z′ ∈ Gm0(y0) such that ∆(z, z′) ≤ ε.

Proposition 12 Vt(y0) −−−→
t→∞

V ∗(y0).



On Uniform Value

Definition 13 Γ(y0) has a uniform value if ∃V (y0) and if:

∀ε > 0,∃u ∈ U ,∃t0,∀t ≥ t0,
1

t

∫ t

s=0
h(y(s, u, y0), u(s))ds ≤ V (y0) + ε.

Given m ≥ 0 and n ≥ 1, ∀z ∈ Z = G(y0) ∀u ∈ U , we define

νm,n(z, u) = sup
t∈[1,n]

γm,t(z, u), and Wm,n(z) = inf
u∈U

νm,n(z, u).

Wm,n is the value function of the problem where the con-
troller can use the time interval [0,m] to reach a ”good
state”, and then his cost is only the supremum for t in
[1, n], of the average cost between time m and m + t.

Obviously Wm,n ≥ Vm,n.



Uniform convergence and existence of a Uniform Value

• STEP 1 For every z and z′ in Z, for all m ≥ 0 and n ≥ 1,

|Vm,n(z)−Vm,n(z′)| ≤ α̂(∆(z, z′)), |Wm,n(z)−Wm,n(z′)| ≤ α̂(∆(z, z′)).

• STEP 2 ∀k, n ≥ 1,∀m,∀z ∈ Z, Vm,n(z) ≥ infl≥mWl,k(z)− k
n.

• STEP 3 ∀z ∈ Z, inf
m≥0

sup
n≥1

Wm,n(z) = inf
m≥0

sup
n≥1

Vm,n(z)

= V ∗(z) = sup
n≥1

inf
m≥0

Vm,n(z) = sup
n≥1

inf
m≥0

Wm,n(z).

• STEP 4 The convergence of (Vn)n to V ∗ is uniform on Z.

• STEP 5 ∀ε > 0,∃M ≥ 0,∃K ≥ 1,∀z ∈ Z, ∃m ≤ M, ∀n ≥
K, ∃u ∈ U such that:

νm,n(z, u) ≤ V ∗(z) + ε/2, and V ∗(y(m + n, u, z)) ≤ V ∗(z) + ε.



Optimal control with discounted facteur λ→ 0+

We define Θλ(y0) := inf
u∈U

∫ +∞

s=0
λe−λsh(y(s, u, y0), u(s))ds,

Recall the Technical Lemma :∀m0 ≥ 0, we have:

sup
t>0

inf
m≤m0

Vm,t(y0) ≥ V +(y0) ≥ V −(y0) ≥ sup
t>0

inf
m≥0

Vm,t(y0).

Define Θ−(y0) := lim inf
λ→0

Θλ(y0),Θ+(y0) := lim sup
λ→0

Θλ(y0).

Lemma 14 sup
t>0

inf
m≤m0

Vm,t(y0) ≥ Θ+(y0) ≥ Θ−(y0) ≥ sup
t>0

inf
m≥0

Vm,t(y0).

Theorem 15 Under the assumptions of Theorem 5 or 8,
the limit limλ→0+ Θλ(y0) exists.
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An Open Problem

Differential Game at horizon t:

Vt(y0) := ” inf
u∈U

sup
v∈V

”
1

t

∫ t

s=0
h(y(s, u, v, y0), u(s), v(s))ds,

where s 7→ y(s, u, y0) denotes the solution to

y′(s) = g(y(s), u(s), v(s))), y(0) = y0.

OPEN PROBLEM : Existence of a limit of Vt(y0) as t→∞.

Only Partial results:

• When the Hamiltonian is coercive (hence ergodicity and
the limit is y independent)Alvarez-Bardi ...

• For nonconvex and non coercive Hamiltonian in IR2 Cardaliaguet



References

[1] O. Alvarez, M. Bardi Ergodicity, Stabilization, and singular perturbations for

Bellman-Isaacs equations To appear in Mem AMS.

[2] Z. Artstein, and V. Gaitsgory, The value function of singularly perturbed control

systems, Appl. Math. Optim., 41 (2000), 425-445.

[3] Arisawa, M. and P.L. Lions (1998) Ergodic problem for the Hamilton Jacobi

Belmann equations II, Ann. Inst. Henri Poincaré, Analyse Nonlinéaire, 15 ,1 ,
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