On existence of a limit average value for a optimal control problem with horizon tending to infinity

> Marc Quincampoix Université de Brest Porquerolles, October 2009

M. Q., & J. Renault, On Existence of a limit value in some non expansive optimal control problems, (*submitted*) (2009)

$$V_t(y_0) := \inf_{u \in \mathcal{U}} \frac{1}{t} \int_{s=0}^t h(y(s, u, y_0), u(s)) ds,$$

where $s \mapsto y(s, u, y_0)$ denotes the solution to

 $y'(s) = g(y(s), u(s)), \quad y(0) = y_0.$

 $g: IR^d \times U \to IR^d$ Lipschitz, U compact, g h bounded. **PROBLEM : Existence of a limit of** $V_t(y_0)$ as $t \to +\infty$. No ergodicity condition here (Lions-Papanicolaou- Varadhan, Arisawa-Lions, Bettiol, Alvarez-Bardi Capuzzo-Dolcetta, Artstein-Gaitsgory, ...)The limit may depend on the initial condition

Contents

- 1. Introduction and examples
- 2. Existence of limit value in nonexpansive case
- $3. \ Generalisations$

Introduction

Definition 1 The problem $\Gamma(y_0) := (\Gamma_t(y_0))_{t>0}$ has a limit value if

$$V(y_0) := \lim_{t \to \infty} V_t(y_0) = \lim_{t \to \infty} \inf_{u \in \mathcal{U}} \frac{1}{t} \int_{s=0}^t h(y(s, u, y_0), u(s)) ds.$$

Definition 2 The problem $\Gamma(y_0)$ has a uniform value if it has a limit value $V(y_0)$ and if:

$$\forall \varepsilon > 0, \exists u \in \mathcal{U}, \exists t_0, \forall t \ge t_0, \frac{1}{t} \int_{s=0}^t h(y(s, u, y_0), u(s)) ds \le V(y_0) + \varepsilon.$$

Examples

• Example 1: here $y \in IR^2$ (seen as the complex plane $i^2 = -1$), there is no control

$$y'(t) = i y(t),$$
$$V_t(y_0) \xrightarrow[t \to \infty]{} \frac{1}{2\pi |y_0|} \int_{|z| = |y_0|} h(z) dz,$$

and since there is no control, the value is uniform.

• Example 2: in the complex plane again, but now $g(y, u) = i \ y \ u$, where $u \in U$ a given bounded subset of IR, and h is continuous in y.

• Example 3: g(y, u) = -y + u, where $u \in U$ a given bounded subset of IR^d , and h is continuous in y.

• Example 4: in IR^2 . The initial state is $y_0 = (0,0)$ and U = [0,1], and the cost is $h(y) = 1 - y_1(1 - y_2)$.

$$y'(s) = g(y(s), u(s)) = \begin{pmatrix} u(s)(1 - y_1(s)) \\ u^2(s)(1 - y_1(s)) \end{pmatrix}$$

One can easily observe that the reachable set $G(y_0) \subset [0,1]^2$. If $u = \varepsilon > 0$ constant, $y_1(t) = 1 - \exp(-\varepsilon t)$ and $y_2(t) = \varepsilon y_1(t)$. So we have $V_t(y_0) \xrightarrow[t \to \infty]{} 0$. Existence of a Uniform Value No ergodicity :

$$\{y \in [0,1]^2, \lim_{t \to \infty} V_t(y) = \lim_{t \to \infty} V_t(y_0)\} = [0,1] \times \{0\},\$$

and starting from y_0 it is possible to reach no point in $(0,1] \times \{0\}$.

Examples

• Example 5: in IR^2 , $y_0 = (0,0)$, control set U = [0,1], $y'(t) = (y_2(t), u(t))$, and $h(y_1, y_2) = 0$ if $y_1 \in [1,2]$, = 1 otherwise. We have $u(s) = y'_2(s) = y''_1(s)$,

Interpretation: u "acceleration", y_2 "speed", y_1 the "position".

If $u = \varepsilon$ constant, then $y_2(t) = \sqrt{2\varepsilon y_1(t)} \quad \forall t \ge 0$. Limit Value: $V_T(y_0) \xrightarrow[T \to \infty]{} 1/2$ No Uniform Value. $\begin{cases} \text{The function } h: IR^d \times U \longrightarrow IR \text{ is measurable and bounded} \\ \exists L \ge 0, \forall (y, y') \in IR^{2d}, \forall u \in U, \|g(y, u) - g(y', u)\| \le L \|y - y'\| \\ \exists a > 0, \forall (y, u) \in IR^d \times U, \|g(y, u)\| \le a(1 + \|y\|) \end{cases} \end{cases}$

Average cost induced by u between 0 and t by:

$$\gamma_t(y_0, u) := \frac{1}{t} \int_0^t h(y(s, u, y_0), u(s)) ds$$

The corresponding Value function satisfies $V_t(y_0) = \inf_{u \in \mathcal{U}} \gamma_t(y_0, u)$

for
$$m \ge 0$$
, $\gamma_{m,t}(y_0, u) := \frac{1}{t} \int_m^{m+t} h(y(s, u, y_0), u(s)) ds$,

Contents

- 1. Introduction and examples
- 2. Existence of limit value in nonexpansive case
- $3. \ Generalisations$

A Technical Lemma

We define $V^{-}(y_{0}) := \liminf_{t \to +\infty} V_{t}(y_{0}), V^{+}(y_{0}) := \limsup_{t \to +\infty} V_{t}(y_{0})$ Lemma 3 For every m_{0} in IR_{+} , we have: $\sup_{t>0} \inf_{m \leq m_{0}} V_{m,t}(y_{0}) \geq V^{+}(y_{0}) \geq V^{-}(y_{0}) \geq \sup_{t>0} \inf_{m \geq 0} V_{m,t}(y_{0}).$ Sketch of the Proof: We first prove $\sup_{t>0} \inf_{m \leq m_{0}} V_{m,t}(y_{0}) \geq V^{+}(y_{0}).$ Suppose by contradiction that $\exists \varepsilon > 0 \ \forall t > 0$ we have $\inf_{m \leq m_{0}} V_{m,t}(y_{0}) \leq V^{+}(y_{0}) - \varepsilon$. Hence for any t > 0

there exists $m \leq m_0$ with $V_{m,t}(y_0) \leq V^+(y_0) - (\varepsilon/2)$. Now observe that

$$V_{m,t}(y_0) \ge \frac{m_0 + t}{t} V_{m_0 + t}(y_0) - 2\frac{m_0}{t}.$$

Passing to the limsup as $t \to +\infty$ we obtain a contradiction.

We now prove $V^{-}(y_0) \geq \sup_{t>0} \inf_{m \leq 0} V_{m,t}(y_0)$. Assume on the contrary that it is false. Then there exists $\varepsilon > 0$ and t > 0 such that $V^{-}(y_0) + \varepsilon \leq \inf_{m \leq 0} V_{m,t}(y_0)$. So for any $m \geq 0$, we have $V^{-}(y_0) + \varepsilon \leq V_{m,t}(y_0)$. We will obtain a contradiction by concatenating trajectories.

Recall the result of the Lemma

$$\sup_{t>0} \inf_{m \le m_0} V_{m,t}(y_0) \ge V^+(y_0) \ge V^-(y_0) \ge \sup_{t>0} \inf_{m \ge 0} V_{m,t}(y_0),$$

and define

Definition 4

$$V^*(y_0) = \sup_{t>0} \inf_{m \ge 0} V_{m,t}(y_0).$$

Denote by $G(y_0) := \{y(t, u, y_0), t \ge 0, u \in \mathcal{U}\}$ the reachable set Theorem 5 (H'1) h(y, u) = h(y) only depends on the state, (H'2) $G(y_0)$ is bounded, (H'3) $\forall (y_1, y_2) \in G(y_0)^2$, $\sup_{u \in U} \inf_{v \in U} < y_1 - y_2, g(y_1, u) - y_2 = 0$ $q(y_2, v) \ge 0.$ Then $\Gamma(y_0)$ has a limit value $V_t(y_0) \xrightarrow[t \to +\infty]{t \to +\infty} V^*(y_0)$. The convergence of $(V_t)_t$ to V^* is uniform over $G(y_0)$, and we have $V^*(y_0) = \sup_{t>1} \inf_{m>0} V_{m,t}(y_0) = \inf_{m>0} \sup_{t>1} V_{m,t}(y_0) =$ $\lim_{m\to\infty,t\to\infty} V_{m,t}(y_0)$. Moreover the value of $\Gamma(y_0)$ is uniform.

• Example 1: here $y \in IR^2$ (seen as the complex plane $i^2 = -1$), there is no control

$$y'(t) = i \ y(t),$$

• Example 2: in the complex plane

 $y'(t) = i \ y(t) \ u(t)$

, where $u \in U$ a given bounded subset of IR, and h is continuous in y.

• Example 3: g(y, u) = -y + u, where $u \in U$ a given bounded subset of IR^d , and h is continuous in y.

Lemma 6 $\forall T > 0, \forall \varepsilon > 0, \forall (y_1, y_2) \in G(y_0)^2, \forall u \in \mathcal{U}, \exists v \in \mathcal{U}, \forall t \in [0, T], \|y(t, u, y_1) - y(t, v, y_2)\| \leq \|y_1 - y_2\| + \varepsilon.$

Proposition 7 $\forall \varepsilon > 0, \exists m_0, \sup_{t>0} \inf_{m \le m_0} V_{m,t}(y_0) \le \sup_{t>0} \inf_{m \ge 0} V_{m,t}(y_0) + 2\varepsilon$

- $(V_T(y_0))_{T>0}$ is equicontinuous (Lemma 6 + continuity of h)
- Define $G^m(y_0) := \{y(t, u, y_0), t \le m, u \in \mathcal{U}\}$ the reachable set in time m.

 $\forall \varepsilon, \exists m_0, \forall z \in G(y_0), \exists z' \in G^{m_0}(y_0) \text{ such that } ||z - z'|| \leq \varepsilon.$

• We have $\inf_{m\geq 0} V_{m,t}(y_0) = \inf\{V_t(z), z \in G(y_0)\}$, and $\inf_{m\leq m_0} V_{m,t}(y_0)$ $\inf\{V_t(z), z \in G^{m_0}(y_0)\}$. By steps 1 and 2 $\inf\{V_t(z), z \in G^{m_0}(y_0)\} \leq \inf\{V_t(z), z \in G(y_0)\} + 2\varepsilon$.

Contents

- 1. Introduction and examples
- 2. Existence of limit value in nonexpansive case
- **3.** ► *Generalisations*

A Generalization

We put $Z = G(y_0)$, and \overline{Z} its closure

Theorem 8 (H1) h is uniformly continuous in y on Z uniformly in u. And for each y in Z, either h does not depend on u or the set $\{(g(y, u), h(y, u)) \in IR^d \times [0, 1], u \in U\}$ is closed. (H2): $\exists \Delta : IR^d \times IR^d \longrightarrow IR_+$, vanishing on the diagonal $(\Delta(y,y)=0)$ and symmetric $(\Delta(y_1,y_2)=\Delta(y_2,y_1))$, and a function $\hat{\alpha} : IR_+ \longrightarrow IR_+ s.t. \hat{\alpha}(t) \xrightarrow[t \to 0]{} 0$ satisfying: a) \forall sequence $(z_n)_n \subset Z$, $\forall \varepsilon > 0$, $\exists n$, $\liminf_p \Delta(z_n, z_p) \leq \varepsilon$. b) $\forall (y_1, y_2) \in \overline{Z}^2, \forall u \in U, \exists v \in U \text{ such that}$ $D \uparrow \Delta(y_1, y_2)(g(y_1, u), g(y_2, v)) \leq 0, \ h(y_2, v) - h(y_1, u) \leq \hat{\alpha}(\Delta(y_1, y_2)).$ Then $\Gamma(y_0)$ has a uniform value $\lim_{t\to\infty} V_t = V^*$.

Remarks

• First result corresponds to the case where: $\Delta(y_1, y_2) = \|y_1 - y_2\|^2$, $G(y_0)$ is bounded, and h(y, u) = h(y) (one can just take $\hat{\alpha}(t) = \sup\{|h(x) - h(y)|, \|x - y\|^2 \le t\}$).

• Although Δ may not satisfy the triangular inequality nor the separation property, it may be seen as a "distance" adapted to the problem $\Gamma(y_0)$.

• $D \uparrow$ is the contingent epi-derivative (which reduces to the upper Dini derivative if Δ is Lipschitz) $D \uparrow \Delta(z)(\alpha) = \lim \inf_{t \to 0^+, \alpha' \to \alpha} \frac{1}{t} (\Delta(z + t\alpha') - \Delta(z))$. If Δ is differentiable, the condition $D \uparrow \Delta(y_1, y_2)(g(y_1, u), g(y_2, v)) \leq 0$ just reads: $< g(y_1, u), \frac{\partial}{\partial y_1} \Delta(y_1, y_2) > + < g(y_2, v), \frac{\partial}{\partial y_2} \Delta(y_1, y_2) > \leq 0$. • The assumption: " $\{(g(y, u), h(y, u)) \in IR^d \times [0, 1], u \in U\}$ closed" could be checked for instance if U is compact and if h and g are continuous with respect to (y, u).

• H2a) is a precompacity condition. It is satisfied as soon as $G(y_0)$ is bounded. cf Renault 2008

• Notice that H2 is satisfied with $\Delta = 0$ if we are in the trivial case where $\inf_u h(y, u)$ is constant.

• Theorem 8 can be applied to example 4, with $\Delta(y_1, y_2) = \|y_1 - y_2\|_1$ (L^1 -norm). In this example, we have for each y_1 , y_2 and u: $\Delta(y_1 + tg(y_1, u), y_2 + tg(y_2, u)) \leq \Delta(y_1, y_2)$ as soon as $t \geq 0$ is small enough.

Proposition 9 We have

 $\begin{cases} \forall (y_1, y_2) \in \bar{Z}^2, \ \forall T \ge 0, \ \forall \varepsilon > 0, \forall u \in \mathcal{U}, \ \exists v \in \mathcal{U}, \\ \forall t \in [0, T], \ \Delta(y(t, u, y_1), y(t, v, y_2)) \le \Delta(y_1, y_2) + \varepsilon, \\ and \ for \ almost \ every \ t \in [0, T], \\ h(y(t, v, y_2), v(t)) - h(y(t, u, y_1), u(t)) \le \hat{\alpha}(\Delta(y(t, u, y_1), y(t, v, y_2))). \end{cases}$ Corollary 10 For every y_1 and y_2 in $G(y_0)$, for all T > 0,

 $|V_T(y_1) - V_T(y_2)| \le \hat{\alpha}(\Delta(y_1, y_2)).$

Lemma 11 For every $\varepsilon > 0$, there exists m_0 in IR_+ such that:

 $\forall z \in G(y_0), \exists z' \in G^{m_0}(y_0) \text{ such that } \Delta(z, z') \leq \varepsilon.$ Proposition 12 $V_t(y_0) \xrightarrow[t \to \infty]{} V^*(y_0).$

On Uniform Value

Definition 13 $\Gamma(y_0)$ has a uniform value if $\exists V(y_0)$ and if: $\forall \varepsilon > 0, \exists u \in \mathcal{U}, \exists t_0, \forall t \ge t_0, \frac{1}{t} \int_{s=0}^t h(y(s, u, y_0), u(s)) ds \le V(y_0) + \varepsilon.$ Given $m \ge 0$ and $n \ge 1, \forall z \in Z = G(y_0) \forall u \in \mathcal{U}$, we define $\nu_{m,n}(z, u) = \sup_{t \in [1,n]} \gamma_{m,t}(z, u), \text{ and } W_{m,n}(z) = \inf_{u \in \mathcal{U}} \nu_{m,n}(z, u).$

 $W_{m,n}$ is the value function of the problem where the controller can use the time interval [0,m] to reach a "good state", and then his cost is only the supremum for t in [1,n], of the average cost between time m and m+t. Obviously $W_{m,n} \ge V_{m,n}$.

Uniform convergence and existence of a Uniform Value

- STEP 1 For every z and z' in Z, for all $m \ge 0$ and $n \ge 1$, $|V_{m,n}(z) - V_{m,n}(z')| \le \hat{\alpha}(\Delta(z,z')), |W_{m,n}(z) - W_{m,n}(z')| \le \hat{\alpha}(\Delta(z,z')).$
- STEP 2 $\forall k, n \ge 1, \forall m, \forall z \in Z, V_{m,n}(z) \ge \inf_{l \ge m} W_{l,k}(z) \frac{k}{n}$.
- STEP 3 $\forall z \in Z$, $\inf_{m \ge 0} \sup_{n \ge 1} W_{m,n}(z) = \inf_{m \ge 0} \sup_{n \ge 1} V_{m,n}(z)$ = $V^*(z) = \sup_{n \ge 1} \inf_{m \ge 0} V_{m,n}(z) = \sup_{n \ge 1} \inf_{m \ge 0} W_{m,n}(z).$
- STEP 4 The convergence of $(V_n)_n$ to V^* is uniform on Z.
- STEP 5 $\forall \varepsilon > 0, \exists M \ge 0, \exists K \ge 1, \forall z \in Z, \exists m \le M, \forall n \ge K, \exists u \in \mathcal{U}$ such that:

 $\nu_{m,n}(z,u) \leq V^*(z) + \varepsilon/2$, and $V^*(y(m+n,u,z)) \leq V^*(z) + \varepsilon$.

Optimal control with discounted facteur $\lambda \to 0^+$

We define $\Theta_{\lambda}(y_0) := \inf_{u \in \mathcal{U}} \int_{s=0}^{+\infty} \lambda e^{-\lambda s} h(y(s, u, y_0), u(s)) ds$, Recall the Technical Lemma : $\forall m_0 \geq 0$, we have: $\sup_{t>0} \inf_{m \le m_0} V_{m,t}(y_0) \ge V^+(y_0) \ge V^-(y_0) \ge \sup_{t>0} \inf_{m \ge 0} V_{m,t}(y_0).$ **Define** $\Theta^-(y_0) := \liminf_{\lambda \to 0} \Theta_\lambda(y_0), \Theta^+(y_0) := \limsup_{\lambda \to 0} \Theta_\lambda(y_0).$ Lemma 14 sup inf $V_{m,t}(y_0) \ge \Theta^+(y_0) \ge \Theta^-(y_0) \ge \sup_{t>0} \inf_{m\ge 0} V_{m,t}(y_0).$ Theorem 15 Under the assumptions of Theorem 5 or 8, the limit $\lim_{\lambda \to 0^+} \Theta_{\lambda}(y_0)$ exists.

Contents

- 1. Introduction and examples
- 2. Existence of limit value in nonexpansive case
- 3. Generalisations
- 4. ► Open problems

Differential Game at horizon t:

$$V_t(y_0) := \inf_{u \in \mathcal{U}} \sup_{v \in \mathcal{V}} \frac{1}{t} \int_{s=0}^t h(y(s, u, v, y_0), u(s), v(s)) ds,$$

where $s \mapsto y(s, u, y_0)$ denotes the solution to

 $y'(s) = g(y(s), u(s), v(s))), \quad y(0) = y_0.$

OPEN PROBLEM : Existence of a limit of $V_t(y_0)$ as $t \to \infty$. Only Partial results:

- When the Hamiltonian is coercive (hence ergodicity and the limit is *y* independent)Alvarez-Bardi ...
- For nonconvex and non coercive Hamiltonian in IR^2 Cardaliagu

References

- [1] O. Alvarez, M. Bardi Ergodicity, Stabilization, and singular perturbations for Bellman-Isaacs equations To appear in Mem AMS.
- [2] Z. Artstein, and V. Gaitsgory, *The value function of singularly perturbed control* systems, Appl. Math. Optim., 41 (2000), 425-445.
- [3] Arisawa, M. and P.L. Lions (1998) Ergodic problem for the Hamilton Jacobi Belmann equations II, Ann. Inst. Henri Poincaré, Analyse Nonlinéaire, 15, 1, 1–24.
- [4] Arisawa, M. and P.L. Lions (1998) On ergodic stochastic control. Com. in partial differential equations, 23, 2187–2217.
- [5] Bettiol, P. (2005) On ergodic problem for Hamilton-Jacobi-Isaacs equations ESAIM: Cocv, 11, 522–541.
- [6] Cardaliaguet P. Ergodicity of Hamilton-Jacobi equations with a non coercive non convex Hamiltonian in $\mathbb{R}^2/\mathbb{Z}^2$ preprint [hal-00348219 version 1] (18/12/2008)
- [7] Frankowska, H., Plaskacz, S. and Rzezuchowski T. (1995): Measurable Viability Theorems and Hamilton-Jacobi-Bellman Equation, J. Diff. Eqs., 116, 265-305.

- [8] V. Gaitsgory, Use of Averaging Method in Control Problems, Differential Equations (Translated from Russian), 46 (1986) pp. 1081-1088.
- [9] V. Gaitsgory, M. Quincampoix Linear programming analysis of deterministic infinite horizon optimal control problems (discounting and time averaging cases), to appear in Siam Journal of Control and Opt.
- [10] G. Grammel, Averaging of singularly perturbed systems, Nonlinear Analysis Theory, 28, 11 (1997), 1851-1865.
- [11] Lions P.-L. , Papanicolaou G. , Varadhan S.R.S., Homogenization of Hamilton-Jacobi Equations, unpublished work.
- [12] Quincampoix, M. and F. Watbled (2003) Averaging methods for discontinuous Mayer's problem of singularly perturbed control systems. *Nonlinear analysis*, 54, 819–837.
- [13] Quincampoix, M. and J. Renault (submitted) On Existence of a limit value in some non expansive optimal control problems, and application to averaging of singularly perturbed systems.
- [14] Renault, J. (2007) Uniform value in Dynamic Programming. Cahier du Ceremade 2007-1. arXiv : 0803.2758.

Thank You for your Attention