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An Optimal Control Problem

oL
Vilon) = inf 5 [ hly(s, ). us)ds
S=

where s — y(s,u,yy) denotes the solution to

y'(s) = g(y(s), uls)), y(0) =y
qg: IRY x U — IRY Lipschitz, U compact, g h bounded.
PROBLEM : Existence of a limit of V(yy) as t — +o0.
No ergodicity condition here (Lions-Papanicolaou- Varad-
han, Arisawa-Lions, Bettiol, Alvarez-Bardi Capuzzo-Dolcetta,

Artstein-Gaitsgory, ...)The limit may depend on the initial
condition
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Introduction

Definition 1  The problem I'(yg) = (I't(yo))t>0 has a limit
value tf

1 t

Viyo) = lim Vi(yo) = lim inf —/ h(y(s, u, yo), u(s))ds.
t—00 t—ooucld t Js—q

Definition 2 The problem I'(yy) has a uniform value if it

has a limit value V(yy) and if:

t

1
Ve > 0,du € U, o, Vt > tp, ;/ h(y(s,u,yo),u(s))ds < V(yg) +e.
s=0



Examples

e Example 1: here y € IR? (seen as the complex plane

i> = —1), there is no control

y'(t) =i y(t),
\ 1
t—o0 2|yl J|z|=y|

Vi(yo)

and since there is no control, the value is uniform.

h(z)dz,

e Example 2: in the complex plane again, but now ¢g(y, u) =
1y u, where v € U a given bounded subset of IR, and A is
continuous in y.



e Example 3: ¢g(y,u) = —y+u, where u € U a given bounded
subset of [Rd, and h is continuous in y.
e Example 4: in IR’. The initial state is yy = (0,0) and
U =10,1], and the cost is A(y) =1 — y1(1 — 7).

/() = gly(s), uls)) = ( u(s)(1 ~ y1(s) ) |

u?(s)(1 = yi(s))
One can easily observe that the reachable set G(yg) C [0, 1]%.
If w =¢ >0 constant, y(t) = 1 — exp(—ct) and yy(t) = ey (t).
So we have V;(yy) —— 0. Existence of a Uniform Value

{—00
No ergodicity :
{y € [0,1% lim Vi(y) = lim Vi(yo)} = [0,1] x {0},
{—00 t—00
and starting from vy, it is possible to reach no point in

(0, 1] x {0}.



Examples

e Example 5: in IR?, yy = (0,0), control set U = [0,1],
y'(t) = (yo(t), u(t)), and h(y1,y2) =0 if y; € [1,2], = 1 otherwise.

We have u(s) = yb(s) = y{(s),

Interpretation: u ”acceleration”, y» ”speed”, y; the ”po-
sition”.

If u = ¢ constant, then yy(t) = \/2cy;(t) Vt > 0.

Limit Value: Vp(yg) —— 1/2

T— o0
No Uniform Value.



Assumptions and Notations

The function A : IR? x U — IR is measurable and bounded
3L > 0,Y(y,y) € IR* NYu e U, ||gly,u) — g(y/',uw)|| < Llly — ¢/|
Ja > 0,Y(y,u) € IR x U, ||gly,w)|| < a(l+[ly||)

Average cost induced by u between 0 and ¢ by:

t
i) =1 [ byt 0),u(s))ds

The corresponding Value function satisfies V;(yg) = inf,,cz7 v+ (yo, ©)

1 m—+t
for m > 0, el u) = [ hly(s,upn),uls)ds.

t Jm
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A Technical Lemma

We define V™ (yg) := liminfy— o0 Vi(yo), V(o) := limsup;_, 1 o Vi (10
Lemma 3 For every mg wn IR+, we have:

sup inf Viui(yo) > V7 (yg) > V" (yo) > sup inf Vi +(vp)-
>0 m<my >0 m=0

Sketch of the Proof: We first prove sup;-ginf,, <, Vint(vo) >
V*(yy). Suppose by contradiction that 3¢ > 0 Vt > 0 we
have inf,, <y, Vint(vo) < VT (y) —e . Hence for any t > 0
there exists m < mgy with Vj,+(y9) < VT (yp) — (¢/2). Now

observe that
mo +t

my
Vint(yo) = Ving+t(yo) — 2=

Passing to the limsup as t — +00 we obtain a contradiction.



We now prove V™ (yy) > sups~qinfy,<o Vint(yo). Assume on
the contrary that it is false. Then there exists ¢ > 0 and
t > 0 such that V"~ (yy) +¢ <inf;,<o Vint(yo). So for any m > 0,
we have V™ (yg)+¢ < Vj,1(yp). We will obtain a contradiction
by concatenating trajectories.

Recall the result of the Lemma

sup inf Vine(yo) = V' (yo) > V" (yo) = sup inf Vi, (yo),
>0 m<my t>0m=0

and define
Definition 4

V*(yp) = Sup inf Vin.t(yo)-



A first result in Nonexpansive case

Denote by G(yg) := {y(t,u,y9),t > 0,u € U} the reachable set

Theorem 5 (H’1) h(y,u) = h(y) only depends on the state,
(H’2) G(yy) ts bounded,

(H’3) Y(y1,92) € Glw)*,  supyeyinfuey < y1 — y2,9(y1,u) —
9(y2,v) >< 0.
Then I'(yg) has a limit value Vi(yp) > V*(yg). The con-

l——+00
vergence of (V3); to V* is uniform over G(yj), and we have
Vi) = supes1 infy>0 Vint(yo) = infy>osupi>1 Vint(yo) =
limy,— o0 t—oo Vi t(yo). Moreover the value of I'(yy) is uni-
form.




e Example 1: here y € IR? (seen as the complex plane

i> = —1), there is no control

y'(t) =i y(t),
e Example 2: in the complex plane
y'(t) = i y(t) ult)

, Where u € U a given bounded subset of /R, and / is con-
tinuous in y.

e Example 3: ¢(y,u) = —y+u, where u € U a given bounded
subset of IR%, and h is continuous in Y.



Sketch of the proof of the first result

Lemma 6 VT > 0,Ve > 0,Y(y1, y2) € G(yp)>,Yu € U, Jv € U,

vt € 0,77, ||y(t, u,y1) —y(t,v,90)|] < |ly1 —yo| +e.

Proposition 7 Ve > 0,3Img, sup inf Vp,4(yo) <sup inf Vi, i(yo) + 2¢
t>0 M=my t>0m=0

o (Vir(yo))r>p is equicontinuous (Lemma 6] +continuity of h)
e Define G"'(yy) = {y(t,u,yp),t < m,u € U} the reachable set
in time m.

Ve, Img, Vz € G(yp), 32" € G™0(yy) such that ||z — 2| < e.
e We have nf;;,> Vm,t(fy()) = inf{Vi(2),2 € G(yy)}, and infmSWO Vm,t(yc
inf{V;(2),z € G"(yy)}. By steps 1 and 2 inf{V;(z),z € G"0(yg)} <
inf{Vi(2),z € G(yp)} + 2¢.
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A Generalization

We put Z = G(y), and Z its closure

Theorem 8 (H1) h is uniformly continuous in y on Z uni-
formly in u. And for each y in 7, either h does not depend
on u or the set {(g(y,u), h(y,u)) € IR*x[0,1], u € U} is closed.
(H2): dA - IR x IRY — IR+, vanishing on the diagonal
(Aly,y) = 0) and symmetric (A(yi,y2) = Aly2,41) ), and a

function & : IRy — IR, s.t. &(t) — 0 satisfying:

a) V sequence (zp)p C Z, Ve > 0, dn, liminf, A(zy, zp) < e.
b) Y(y1,19) € 7% Yu e U, Jv e U such that

DT Alyr, y2)(g9(y1, ), g(y2,v)) <0, h(yo,v) — h(yr, u) < a(Ayr, y2))-
Then I'(yy) has a uniform value limy_,o V; = V™.



Remarks

e First result corresponds to the case where: A(yj,y9) =
ly1 — yol|*, G(yo) is bounded, and h(y,u) = h(y) (one can just
take a(t) = sup{|h(z) — h(y)], ||z — y[|* < 1}).

e o Although A may not satisfy the triangular inequality
nor the separation property, it may be seen as a “distance”
adapted to the problem I'(yg).

e D 7 is the contingent epi-derivative (which reduces to
the upper Dini derivative if A is Lipschitz) DTA(z)(a) =
liminf, g+ oo $1(A(z + o) — A(2)).  If A is differentiable,
the condition D T A(yi,42)(9(y1,u), g(y9,v)) < 0 just reads:

< gy1,u), Ay, y2) > + < 9(y2,0), 2=Aly1, y2) >< 0.
Y1 Y2




e The assumption: “{(g(y,u),h(y,u)) € IR x [0,1], u € U}
closed” could be checked for instance if U is compact and
if h and ¢ are continuous with respect to (y,u).

e H2a) is a precompacity condition. It is satisfied as soon
as G(yg) is bounded. cf Renault 2008

e Notice that H?2 is satisfied with A = 0 if we are in the
trivial case where inf, h(y,u) is constant.

e Theorem {8 can be applied to example 4, with A(y;,19) =
ly; — 10|l (L'-norm). In this example, we have for each v,

yo and u: Ay +tg(y1, u), yo +tg(y2, u)) < A(yr,y2) as soon as
t > 0 is small enough.



Proposition 9 We have

Y(y1,y2) € Z2, YT >0, Ve > 0,Yu e U, Jv € U,

Vit € [07 T]a A<y<t7 uayl)a y<t7 v, y2>) < A(ylv y2> + €,
and for almost every t € (0,7,

h(y(t, v, y2), v(t)) — My(t, u,y1), u(t)) < a(A(y(t, w,y1), y(¢, v, 92))).
Corollary 10 For every y; and 1o in G(yg), for all T > 0,

Vr(y1) — Vr(yo)l < a(Ayr, y2)).

Lemma 11 For every ¢ > 0, there exists my in IR+ such
that:

Vz € G(yy), 37 € G"™(yy) such that A(z,7) <e

Proposition 12 Vi(yg) —— V*(yp).

t—00



On Uniform Value

Definition 13 [I'(yg) has a uniform value tf 3V (yg) and if:
1 t
Ve > 0,du e U, o, Vt > tp, ;/ h(y(s,u,yo), u(s))ds < V(yg) +e€.

s=()
Given m>0and n > 1, Vz € Z = G(yy) Yu € U, we define
Vmn(2,1) = sup Ymi(z,u), and Wiy, n(2) = inf vy (2, u).
tel1,n] uet

Wm.n 1s the value function of the problem where the con-
troller can use the time interval [0,m| to reach a ”good
state”, and then his cost is only the supremum for ¢ in
1,n], of the average cost between time m and m + t.

Obviously Wy, n > Vi .



Uniform convergence and existence of a Uniform Value

e STEP 1 For every z and 2’ in Z, for all m >0 and n > 1,
Wm,n(z)_vm,n<zl)| < a(Alz, Zl))a ‘Wm,n<z>_Wm,n<Z/)’ < a(Alz, Zl))

o STEP 2 Vk,n > 1,¥m,Vz € Z, Vipn(2) > infysy, Wy p(z) — £

e STEP 3Vze Z inf sup Wyn(z) = inf sup Viyn(z)
m>0p>1 | m=0p>1 |

() — - _ .
= V7 (2) sup Jnf Vin,n(2) s Jnf Winn(2).

e STEP 4 The convergence of (V},),, to V* is uniform on Z.
e STEP 5 Ve > 0,3M > 0.3K > 1.Vz € Z.3m < M.¥n >
K,Ju € U such that:

Umon(z,u) < V*(2) +¢/2, and VF(y(m + n,u, 2)) < V¥(z) + €.



Optimal control with discounted facteur A — 07

+00
We define O)(yg) .= inf / Ae M h(y(s, u, yp), u(s))ds,
ueU s=()

Recall the Technical Lemma :Ymy > 0, we have:

sup inf Vi e(yo) = V' (yo) > V™~ (yo) = sup inf Vi ¢(yo).
t>0 m=my t>0m=0

Define O () := liminf ©, (yo), O (yo) := limsup O, (yp).

A—0 A—0
Lemma 14 sup inf Vi, 4(yo) = O (yo) = O (yo) = sup inf Vi 4(yp).
t>0 m=my t>0m=0

Theorem 15 Under the assumptions of Theorem 5 or 8,
the limit lim, o+ O)(yg) exists.
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An Open Problem

Differential Game at horizon t:
. 77 1 t
Vilwo)i=" inf sup” & [ hly(s. v, o). uls). o)) ds,
u€U yey Tt Js=0
where s — y(s,u,yy) denotes the solution to

y'(s) = gly(s), u(s), v(s))), w(0) = yo.

OPEN PROBLEM : Existence of a limit of V;(yj) as t — oc.
Only Partial results:

¢ When the Hamiltonian is coercive (hence ergodicity and
the limit is y independent)Alvarez-Bardi ...

e For nonconvex and non coercive Hamiltonian in IR? Cardaliagt
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