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To obtain a linear programming characterization for the minimum cost
associated to







i) x ′(t) ∈ f (x(t),u(t)) − NK (x(t)) for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0 and
u(·) : [0,∞) → U is a measurable function.

(1)

Here K is a nonempty closed subset of R
N , U is a compact metric space,

f is a function from R
N × U into R

N and NK (x) is the normal cone to K at
x ∈ K .
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The value functions we consider here are given by:

V 1(x0) = inf
u(·)∈U(0)

∫ ∞

0
e−atg (x (t ; x0,u(·)) ,u(·)) dt for all x0 ∈ K (2)

V 2(t0, x0) = inf
u(·)∈U(t0)

g(x(T ; t0, x0,u(·)) for all (t0, x0) ∈ [0,T ] × K (3)

where x(·; t0, x0,u(·)), denotes the solution of (1) starting from (t0, x0).
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More precisely, we obtain a characterization of the value functions of the
following form:

inf
γ∈W 1(x0)

∫

K×U
g(x ,u)dγ = aV 1(x0)

and respectively

inf
γ∈W 2(t0,x0)

∫

[t0,T ]×K×U
g(x)1{T}×K×Udγ = V 2(t0, x0)

where W 1(x0), respectively W 2(t0, x0) are sets of probability measures
on K × U, respectively [t0,T ] × K × U. This sets contain the set of
occupational measures generated by solutions of the reflected controlled
system.
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We assume that f : R
N × U → R is continuous and satisfies:

{

||f (x ,u) − f (y ,u)|| ≤ a ‖x − y‖
The set f (x ,U) is convex.

∀x , y ∈ R
N ,u ∈ U (4)

where a > 0 is a constant.
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Definition 1

A closed set K ⊂ R
N is called proximal retract if there exists a

neighborhood I of K such that the projection ΠK (·) is single-valued in I,
with ΠK (x) := {z ∈ K | ||x − z|| = infy∈K ||x − y ||} for all x ∈ R.
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So, if K is proximal retract we have that:
- There exist r , c > 0 such that the application x → NK (x) ∩ B(0, r) + cx
is monotone. Recall that a set valued map G : K → R

N is monotone if
〈y1 − y2, x1 − x2〉 ≥ 0 for all yi ∈ G(xi), i ∈ {1,2}. on K .
- K is sleek i.e. the map x → TK (x) is lower semicontinuous (l.s.c.);
- TK (x) = CK (x), for all x ∈ K . Here CK (x) denotes the Clarke’s tangent
cone. Recall taht CK (x) = {v | limh→0+,K∋x′→x dK (x ′ + hv)/h = 0}. This
tangent cone is always closed and convex. Note that the class of sleek
sets is larger then the class of proximal retracts.
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- The map x → ΠK (x) is single valued and continuous on a neighborhood
I of K (moreover ΠK is Lipschitz on a neighborhood of K ;). Moreover, the
map x → TK (x) is lower semicontinuous (l.s.c.) and equivalently the polar
map x → NK (x) has closed graph.
-The map p : R

N → R+ is in C1,1(I) where we recall that

p(x) := d2
K (x) for all x ∈ R

N .
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We consider a closed set K, a set valued map F : R
N → R

N and the
following differential inclusions:

{

i) x ′(t) ∈ F (x(t)) − NK (x(t)) for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0

(5)

{

i) x ′(t) ∈ ΠcoTK (x)F (x(t))for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0

(6)
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Proposition 2

i) Suppose that K is bounded and F is a set valued map. Then the sets of
absolutely continuous solutions to (6) and (5) coincide.
Moreover if F is upper semicontinuous (u.s.c.) with non-empty compact
convex values, has a linear growth and K is bounded and sleek, then:
ii) for every (t0, x0) ∈ [0,∞) × R

N there exists a solution of (5).
iii) the restriction of the map (t0, x0) → SF−NK (t0, x0) to a compact set C of
[0,∞) × K is compact into [0,∞) × K × W 1,1(0,∞ ; K )e−bt for all b with
b > a1. Here SF−NK (t0, x0) denotes the set of solutions to (5) starting from
(t0, x0).
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F (x) = f (x ,U) = {f (x ,u),u ∈ U} for all x ∈ R
N ,

For M > 0 determined by the maximum of f on , we denote by
Sf−NK (t0, x0) the set of absolutely continuous solutions to:







i) x ′(t) ∈ f (x(t),u(t)) − NK (x(t)) ∩ B(0,M) for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0

iii) u(·) ∈ U(t0)
(7)

and by SF−N̂K
(t0, x0) the set of absolutely continuous solutions to:

{

i) x ′(t) ∈ F (x(t)) − NK (x(t)) ∩ B(0,M) for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0.

(8)
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Proposition 3

Suppose that K is a compact proximal retract set and (Hf ) holds.
i) If x(·) is a solution to (8) starting from (t0, x0) then there exists
u(·) ∈ U(t0) such that x(·) is equal to x(·; t0, x0,u(·)), solution of (7).
ii) As a direct consequence of i):

SF−NK (t0, x0) = Sf−NK (t0, x0) for all (t0, x0) in [0,T ] × K .
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Lemma 4

Assume that (Hf ) holds true and K is a bounded proximal retract. Then
for x0(·) ∈ Sf−NK , x1(·) ∈ Sf−NK (t1, x1) with x1, x2 in K , fixed u(·) ∈ U(t0)
and t ≥ t1 ≥ t0 there exists C > 0 a constant depending on t, such that:

‖x0(t ; t0, x0,u(·)) − x1(t ; t1, x1,u(·))‖ ≤ C(‖x0 − x1‖ + |t0 − t1|).

As a direct consequence of the above estimation we obtain:

Corollary 5

Assume that (Hf ) holds true and K is a bounded proximal retract. Then
for every fixed u(·) ∈ U(t0) there exists an unique solution of (1) in K .
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Lemma 6

Suppose that (Hf ) holds true and K is a compact proximal retract. Then
we have
(Existence of an Optimal control) If g is lower semicontinuous, then V 1

and V 2 are lower semicontinuous and there exists optimal trajectories
starting from each point x0 and respectively (t0, x0), i.e. there exists
x̄1(·), x̄2(·) ∈ SF−NK (t0, x0) such that

V 1(x0) =

∫ ∞

0
e−atg (x̄1 (t ; x0, ū1(·)) , ū1(·)) dt

V 2(t0, x0) = g(x̄2(T ; t0, x0, ū2(·))).
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Lemma 7

(Dynamic Programming Principle) Let g : K → R be a bounded function,
K a compact proximal retract and suppose that (Hf ) holds. Then, for all
(t0, x0) ∈ [0,T ] × R

N and h > 0 small enough we have:

V 1(x0) = inf
u(·)∈UK (0)

{

∫ h

0
e−atg (x (t ; x0,u) ,u) dt + V 1(x (t + h; x0,u))

}

,

V 2(t0, x0) = inf
x∈SF−NK

(t0,x0)
V 2(t0 + h, x(t0 + h)).
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We give now a brief idea of our method. It consists in introducing the
following approximating control systems:







i) x ′(t) = f (x(t),u(t)) − n∇p(x(t)) for almost all t ≥ t0
ii) x(t0) = x0 ∈ Kn

u(·) : [0,∞) → U is a measurable function
(9)

where n ∈ N∗, Kn will be defined latter. The function p : R
N → R+ is

defined by
p(x) := d2

K (x) for all x ∈ R
N .

Here we note by dA(x) := infy∈A ||x − y || the distance function to a set
A ⊂ R

N . In this paper || · || and 〈·〉 are the Euclidian norm and scalar
product in R

N . Moreover, B denotes the closed unit sphere of R
N . Under

appropriate hypotheses on K , the function p will be in C1,1(Kn).
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The value functions associated with (9) are given by:

V 1
n (x0) = inf

u(·)∈U(0)

∫ ∞

0
e−atg (xn (t ; x0,u(·)) ,u(·)) dt for all x0 ∈ Kn

(10)

V 2
n (t0, x0) = inf

u(·)∈U(t0)
g(xn(T ; t0, x0,u(·)) for all (t0, x0) ∈ [0,T ] × Kn. (11)

Here xn(·; t0, x0,u(·)) denotes the solution of (9) starting from (t0, x0) and
U(t0) is the set of measurable controls on [t0,∞) with values in U.
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Proposition 8

Suppose that K is a compact proximal retract set and (4) holds. Then for
n large enough the set Kn := K + M

n B is contained in I and it is invariant
for (9).
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Proposition 9

Suppose that K is a compact proximal retract set and (4) holds. Then for
every u(·) : [0,∞) → U a measurable control the sequence of solutions
xn(·, t0, x0,u(·))

{

i) x ′(t) = f (x(t),u(t)) − n∇p(x(t)) for almost all t ≥ t0
ii) x(t0) = x0 ∈ Kn

(12)

contains a subsequence which converges (weekly) to the solution of
{

i) x ′(t) ∈ f (x(t),u(t)) − NK (x(t)) ∩ B(0,M) for almost all t ≥ t0
ii) x(t) ∈ K for all t ≥ t0, x(t0) = x0

(13)

Conversely, we have that any solution of (1) can be approximated
(weekly) by a sequence of solutions of (9).
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Now, we can easily prove that

Proposition 10

Suppose that K is a compact proximal retract set and (Hf ) holds. Then
for i ∈ {1,2}

V i
n → V i pointwisely when n → ∞.
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Note that if g : R
N → R is a continuous function then the value functions

are also continuous.

aV 1
n (x0) = inf

u∈U

∫

Kn×U
g(x ,u)dγ(n,u)

Here for all xn(·; x0,u(·)) we associate the probability measure
γ(n,u) ∈ P(Kn × U) given by

γ(n,u)(Q) := a
∫ ∞

0
e−at1Q (xn (t ; x0,u(·)) ,u(·)) dt

for any Q ⊂ Kn × U which is borelian. The set of all this discounted
occupational measures is denoted by Γ1

n(x0). Equivalently, the previous
definition can be expressed by

∫

Kn×U
l(x ,u)dγ(n,u) = a

∫ ∞

0
e−at l (x (t ; x0,u(·)) ,u(·)) dt .

for any continuous function l : Kn × U → R.
29 of 51 The problem of optimal control with reflection studied throug h a linear optimization



The Problem
Preliminaries

Approximation of the reflected control problem
Duality in optimal control

The case of infinite horizon cost
The case of a terminal cost

Appendix

Definition 11

For every x0 ∈ Kn we denote by Yn := Kn × U

W 1
n (x0) :=

{

γ ∈ P(Yn) | ∀ϕ ∈ C1(Kn; R),
∫

Yn
[〈∇ϕ(x), f (x ,u) − n∇p(x)〉 − a(ϕ(x0) − ϕ(x))] dγ = 0.

}

Φ1
n(x0) :=







ϕ ∈ C1(Kn; R) such that
−aϕ(x) + 〈∇ϕ(x), f (x ,u) − n∇p(x)〉 + g(x ,u) ≥ 0

for all (x ,u) ∈ Kn × U







µ1
n(x0) := sup







µn ∈ R | ∃ϕ ∈ C1(Kn; R) such that
µ ≤ 〈∇ϕ(x), f (x ,u) − n∇p(x)〉 − a(ϕ(x0) − ϕ(x))

+g(x ,u) for all (x ,u) ∈ Kn × U






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We obtain the equality

inf
γ∈W 1

n (x0)

∫

Kn×U
g(x ,u)dγ(n,u) = µ1

n(x0) = aV 1
n (x0).

Similar result holds for V 2
n .
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Proposition 12

Suppose that K is a compact proximal retract and (4) holds. If g is l.s.c.
then for all x0 in K n

2
we have:

V 1
n (x0) = sup{ϕ(x0)|ϕ ∈ Φn

∞ and ϕ(·) ≤ g(·) on Kn}

V 2
n (t0, x0) = sup{ϕ(t0, x0)|ϕ ∈ Φn

T and ϕ(T , ·) ≤ g(·) on Kn}

Here Φn
∞ is the set of all functions ϕ : R

N → R , ϕ ∈ C1(RN ; R) such that

−aϕ(x) + 〈∇ϕ(t , x), f (x ,u) − n∇p(x)〉 + g(x ,u) ≥ 0

for all (x ,u) ∈ Kn × U

and Φn
T is the set of all functions ϕ : R

N+1 → R, ϕ ∈ C1(RN+1; R) such
that

∇tϕ(t , x) + 〈∇xϕ(t , x), f (x ,u) − n∇p(x)〉 ≥ 0
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Note that that if g is continuous then

V 1 is viscosity solution of the following Hamilton Jacobi Inclusion

−aV (x) + H1(x ,∇V (x)) − 〈∇V (x),NK (x)〉 ∋ 0 if x ∈ K (14)

V 2 is viscosity solution of the following Hamilton Jacobi Inclusion






∇tV (t , x) + H2(x ,∇xV (t , x)) − 〈∇xV (t , x),NK (x)〉 ∋ 0
if (t , x) ∈ [0,T ) × K;

with the condition V (T , x) = g(x) if x ∈ K .
(15)
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Moreover using classical results we have

V 1
n is viscosity solution of the following Hamilton Jacobi Inclusion

−aV (x) + H1(x ,∇V (x)) − 〈∇V (x),n∇p(x)〉 = 0 if x ∈ K (16)

V 2
n is viscosity solution of the following Hamilton Jacobi Equation






∇tV (t , x) + H2(x ,∇xV (t , x)) − 〈∇Vx (t , x),n∇p(x)〉 = 0
if (t , x) ∈ [0,T ) × K;

with the condition V (T , x) = g(x) if x ∈ K .
(17)
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Here the Hamiltonians are given by:

H1(x ,p) = min
u∈U

(〈f (x ,u),p〉 + g(x ,u)),∀ (x ,p) ∈ K × R
N ,

H2(x ,p) = min
u∈U

〈f (x ,u),p〉 ,∀ (x ,p) ∈ K × R
N .

For the convenience of the reader we recall the notion of solution that we
employ here (for instance for (15)).
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Definition 13

A viscosity supersolution of (14) is a lower semicontinuous (l.s.c. in
short) function ψ : (0,T ) × R

N → R such that:

for any φ ∈ C1 and (t0, x0) ∈ arg Min (ψ − φ) ,

there exists y0 ∈ NK (x0) such that

∇tφ(t0, x0)+ H2(x0,∇xφ(t0, x0)) − 〈y0,∇xφ(t0, x0)〉 ≤ 0.

and a viscosity subsolution of (14) is an upper semicontinuous (u.s.c. in
short) function ϕ : (0,T ) × R

N → R such that:

for any φ ∈ C1 and (t0, x0) ∈ arg Max (ϕ− φ) ,

there exists z0 ∈ NK (x0) such that

∇tφ(t0, x0)+ H2(x0,∇xφ(t0, x0)) − 〈z0,∇xφ(t0, x0)〉 ≥ 0.
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An application

Note that we have

aV 1(x0) = inf
u∈U

∫

K×U
g(x ,u)dγ(u)

As previously, for all x(·; x0,u(·)) we associate the probability measure
γ(u) ∈ P(K × U) given by

γ(u)(Q) := a
∫ ∞

0
e−at1Q (x (t ; x0,u(·)) ,u(·)) dt .

for any Q ⊂ K × U which is borelian. Equivalently, the previous definition
can be expressed by

∫

K×U
l(x ,u)dγ(u) = a

∫ ∞

0
e−at l (x (t ; x0,u(·)) ,u(·)) dt .

for any continuous function l : K × U → R.
The set of all measures associated with trajectories is denoted by Γ1(x0).
We denote by γn ⇀ γ where γn, γ are probability measures on K × U the
weak convergence i.e.

∫ ∫
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Definition 14

For every x0 ∈ K we denote by Y := K × U

W 1(x0) :=
{

γ ∈ P(Y ) | ∃γn ∈ W 1
n (x0) such that γn ⇀ γ

}

Φ∞(x0) := ∪n∈NΦ1
n(x0)

µ1(x0) := sup







µ ∈ R | ∃ϕ ∈ C1(RN ; R) and n ∈ N
µ ≤ 〈∇ϕ(x), f (x ,u) − n∇p(x)〉 − a(ϕ(x0) − ϕ(x))

+g(x ,u) for all (x ,u) ∈ Kn × U







:= sup
n∈N

µ1
n(x0).
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An application

Theorem 15

Suppose that K is a compact proximal retract set and (4) holds. Then, for
all x0 ∈ K we have that

aV 1(x0) = inf
γ∈W 1(x0)

∫

K×U
g(x ,u)dγ = µ1(x0).
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An application

Suppose that for x0 ∈ K we have the following property ; there exists a
sequence

ϕnk ∈ Φ1
nk

(x0) such that lim
k
ϕnk (x0) → V 1(x0) and 〈∇ϕnk ,∇p〉 ≤ 0 on Knk .

(18)
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An application

For every x0 ∈ K we denote by Y := K × U

W̃ 1(x0) :=

{

γ ∈ P(Y ) | ∀ϕ ∈ C1(RN ; R), ∃y(·) selection of NK (·)
∫

Y

[〈

∂φ
∂x (x), f (x ,u) − y(x)

〉

− a(ϕ(x0) − ϕ(x))
]

dγ = 0.

}

Φ̃∞(x0) :=











ϕ ∈ C1(K ; R) such that ∀y(·) selection of NK (·) ∩ B(0,M)

−aϕ(x) +
〈

∂φ
∂x (x), f (x ,u) − y(x)

〉

+ g(x ,u) ≥ 0

for all (x ,u) ∈ K × U











µ̃1(x0) := sup











µ ∈ R | ∃ϕ ∈ C1(RN ; R) such that ∀y(·) selection of NK (·) ∩ B

µ ≤
〈

∂φ
∂x (x), f (x ,u) − y(x)

〉

− (aϕ(x0) − ϕ(x))

+g(x ,u) for all (x ,u) ∈ K × U
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An application

Theorem 16

Suppose that K is a compact proximal retract set and (4) holds. Then, for
all x0 ∈ RN we have that

aV 1(x0) = inf
γ∈W̃ 1(x0)

∫

Y
g(x ,u)dγ = µ̃1(x0).
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Note that if g : R
N → R then we have the following

V 2
n (t0, x0) = inf

u∈U

∫

[t0,T ]×Kn×U
1{T}×K×Ug(x)dγ(n,u)

Here for all xn(·; x0,u(·)) we associate the probability measure
γ(n,u) ∈ P([t0,T ] × Kn × U) given by

γ(n,u)(Q) :=
1

T − t0

T
∫

t0

1Q(t , x(t),u(t))dt

for any Q which is measurable subset of [t0,T ] × Kn × U. Equivalently,
the previous definition can be expressed by

∫

Kn×U
l(x ,u)dγ(n,u) =

1
T − t0

T
∫

t0

l(t , x(t),u(t))dt .

for any continuous function l : [t0,T ] × Kn × U → R.
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For every (t0, x0) ∈ [t0,T ] × Kn we denote by Yn := Kn × U

W 2
n,T (t0, x0) :=







γ ∈ P([t0,T ] × Yn) | ∀ϕ ∈ C1([t0,T ] × Kn; R),
∫

[t0,T ]×Kn×U [(T − t0) (∇tϕ(t , x) + 〈∇xϕ(t , x), f (x ,u) − n∇p(x
−1{T}×K×Uϕ(s, x) + ϕ(t0, x0)

]

dγ = 0

Φ2
n(t0, x0) :=















ϕ ∈ C1([t0,T ] × Kn; R) such that
(T − t0) (∇tϕ(s, x) + 〈∇xϕ(s, x), f (x ,u) − n∇p(x)〉)

−1{T}×K×Uϕ(s, x) + ϕ(t0, x0) ≥ 0
for all (t , x ,u) ∈ [t0,T ] × Kn × U















µ2
n(t0, x0) := sup















µn ∈ R | ∃ϕ ∈ C1([t0,T ] × Kn; R) such that
µ ≤ (T − t0) (∇tϕ(t , x) + 〈∇xϕ(t , x), f (x ,u) − n∇p(x)〉)

−1{T}×Kn×Ug(x) + ϕ(t0, x0)
for all (t , x ,u) ∈ [t0,T ] × Kn × U














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Definition 17

For every (t0, x0) ∈ [t0,T ] × K we denote by Y := K × U

W 2(t0, x0) :=

{

γ ∈ P([t0,T ] × Y ) | ∃γn ∈ W 2
n (t0, x0) such that

γn ⇀ γ

}

Φ2
∞(t0, x0) := ∪n∈NΦ2

n(t0, x0)

µ2(t0, x0) := sup
n∈N

µ2
n(t0, x0).
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Theorem 18

Suppose that K is a compact proximal retract set and (4) holds. Then, for
all (t0, x0):

V 2(t0, x0) = inf
γ∈W 2(t0,x0)

∫

[t0,T ]×K×U
g(x)1{T}×K×Udγ = µ2(t0, x0).
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Consider the solution x(·; x0,u(·)) of (1), i.e. ∃y(·) selection of NK (·) such
that

x ′(t) = f (x(t),u(t)) − y(x(t)) a.e.

For any ϕ ∈ C1(RN ; R) it is easy to see that

∞
∫

0

d
dt

e−atϕ(x(t))dt = −ϕ(x0)

So,
∞
∫

0

e−at
(

−aϕ(x(t)) +

〈

∂φ

∂x
(x(t)), f (x(t),u(t)) − y(x(t))

〉)

dt = −ϕ(x0)

or equivalently
∫

Y

(

−aϕ(x) +

〈

∂φ

∂x
(x), f (x(t),u(t)) − y(x(t))

〉)

dγ(u) = −aϕ(x0)
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