Commande optimale d'équations elliptiques semi linéaires par pénalisation interne

J.F. Bonnans 1 F. Silva 2

¹CMAP, Ecole Polytechnique, and INRIA Saclay

²CMAP, Ecole Polytechnique, and INRIA Saclay

GDR MOA 19 Octobre, 2009

For $s > \frac{1}{2}n$ consider the following problem

$$(\mathcal{CP}_0^{\mathfrak{s}}): \begin{cases} \operatorname{Min} \frac{1}{2} \int_{\Omega} (y(x) - \bar{y}(x))^2 dx + \frac{1}{2}N \int_{\Omega} u(x)^2 \mathrm{d}x \\ -\Delta y(x) + \phi(y(x)) &= f(x) + u(x) \text{ for } x \in \Omega. \\ \text{s.t} & y(x) &= 0 & \text{for } x \in \partial\Omega \\ u(x) &\in \mathcal{U}_+^{\mathfrak{s}}. \end{cases}$$

Here ϕ is \mathcal{C}^2 , increasing and Lipschitz with associated constant L. The boundary of Ω is \mathcal{C}^2 , $\bar{y} \in \mathcal{C}^2$, N > 0 and $\mathcal{U}^s_+ := L^s(\Omega; \mathbb{R}_+)$.

- For every $u \in L^s$, the semilinear elliptic equation admits a unique solution noted $y_u \in \mathcal{Y}^s := W^{2,s} \cap W_0^{1,s}$.
- Define

$$J_0(u) := \frac{1}{2} \int_{\Omega} (y_u(x) - \bar{y}(x))^2 dx + \frac{1}{2} N \int_{\Omega} u(x)^2 \mathrm{d}x$$

• Note that $J_0(u)$ is not necessarily convex, therefore the classical proof of existence and uniqueness does not apply.

Instead we have

Proposition

Problem (\mathcal{CP}_0^s) has (at least) one solution u_0 .

Now, for every $u \in L^s$ let us define the adjoint state p_u associated with u as the unique solution in \mathcal{Y}^s of

$$\begin{cases} -\Delta p_u(x) + \phi'(y_u(x))p_u(x) &= y_u(x) - \bar{y}(x) & \text{for} \quad x \in \Omega \\ p_u(x) &= 0 & \text{for} \quad x \in \partial \Omega \end{cases}$$

We will write $y_0 := y_{u_0}$ and $p_0 := p_{u_0}$. F.O.C. for (\mathcal{CP}_0^s) imply that

 $u_0(x) = \Pi_0(-N^{-1}p_0(x))$ for a.a $x \in \Omega$

where $\Pi_0(x) := \max\{x, 0\}.$

Next we consider a *localized* penalized version of (CP_0^s) . Let ℓ be a convex C^2 function such that

$$\lim_{x \to 0^+} \ell'(x) = -\infty$$
$$\lim_{x \to 0^+} \frac{\ell''(x)}{\ell'(x)} = -\infty.$$

• There exist constants $\alpha_1, \alpha_2 \ge 0$ such that

$$|\ell'(t)| \le \alpha_1 t + \alpha_2 \quad \forall \ t \ge 1.$$

Examples:

•
$$\ell(x) = -\log x$$
 (logarithmic barrier)
• $\ell(x) = \frac{1}{x^p} p > 0, \quad \ell(x) = x \log x.$

Penalized problem

Let u_0 be a solution of (\mathcal{CP}^s_0) . For $b, \varepsilon > 0$ consider the problem $(\mathcal{CP}^{b,s}_{\varepsilon})$ defined as

$$\mathrm{Min} \ J_{\varepsilon}(u) := J_0(u) + \varepsilon \int_{\Omega} \ell(u(x)) \mathrm{d}x \quad \mathrm{s. t. } \ u \in \mathcal{U}^s_+ \cap \bar{B}_s(u_0, b).$$

where $\bar{B}_s(u_0, b)$ denotes the closed ball in L^s centered at u_0 of radius *b*. It holds that

Proposition

Problem $(\mathcal{CP}^{b,s}_{\varepsilon})$ has (at least) a solution u_{ε} . In addition, there exists a constant $C_1 > 0$ such that

$$\ell'(2u_arepsilon(x))\geq -rac{2\mathcal{C}_1}{arepsilon} \quad \textit{for a.a. } x\in \Omega.$$

and, if ε is small enough, there exists a constant K_ℓ such that

 $u_{\varepsilon}(x) \leq K_{\ell}$ for a.a. $x \in \Omega$.

Note that $u \in L^{s} \to \int_{\Omega} \ell(u(x)) dx$ is, in general, not continuous and therefore not differentiable. Nevertheless, thanks to the proposition above we have that $u_{\varepsilon} \in L^{\infty}$ which allows us to write some first order optimality conditions.

Lemma

Let u_{ε} be a local solution of $(\mathcal{CP}^{b,s}_{\varepsilon})$. Then there exist $\lambda_{\varepsilon} \geq 0$ such that

$$egin{array}{lll} \mathsf{N} u_arepsilon(x)+p_arepsilon(x)+arepsilon\ell'(u_arepsilon)+\lambda_arepsilon u_arepsilon(x)^{s-1}&=&0\ \lambda_arepsilon(||u_arepsilon-u_0||_s-b)&=&0. \end{array}$$

Now we can state the convergence result

Proposition

Suppose that there exists $b_0 > 0$ such that u_0 is a strict local minimum of (CP_0^s) in $B_s(u_0, b_0)$. Then, (i) The controls u_{ε} , solutions of $(CP_{\varepsilon}^{b,s})$ converge as $\varepsilon \downarrow 0$ to u_0 in L^s . (ii) It holds that $J_{\varepsilon}(u_{\varepsilon}) \to J_0(u_0)$ and that $J_0(u_{\varepsilon}) \downarrow J_0(u_0)$.

(iii) The states y_{ε} converge to y_0 in $W^{2,s}$ and the adjoint states p_{ε} converge to p_0 in $W^{2,s}$.

Convergence results and optimality conditions imply that $\lambda_\varepsilon=0$ for ε small enough and therefore

$$u_{\varepsilon}(x) = \prod_{\varepsilon} (-N^{-1}p_{\varepsilon}(x))$$

where $\Pi_{\varepsilon}(x)$ is defined as the solution of

$$\min_{z\in\mathbb{R}_+} \ \frac{1}{2}(z-x)^2 + \varepsilon \ell(z),$$

Asymptotic expansion and error estimation

Let u_0 be a solution of (\mathcal{CP}_0^s) and y_0 , p_0 its associated state and costate, respectevely. Consider the mapping $F: \mathcal{Y}^s \times \mathcal{Y}^s \times \mathbb{R}_+ \to L^s \times L^s$ defined by

$$\mathsf{F}(y,p,\varepsilon) := \left(\begin{array}{c} \Delta y + \Pi_{\varepsilon}(-\mathsf{N}^{-1}p) + f - \phi(y) \\ \Delta p + y - \bar{y} - \phi'(y)p \end{array}\right)$$

The objective is to obtain an "asymptotic expansion" for $(y_{\varepsilon}, p_{\varepsilon})$, the state and costate of a *localized penalized* problem, around (y_0, p_0) .

• It is easy to see that in general F is not differentiable at $(y_0, p_0, 0)$. Therefore, we cannot apply the standard implicit function theorem in order to obtain such expansion.

Theorem

(Restoration theorem) Let X and Y be Banach spaces, E a metric space and $F : U \subset X \times E \to Y$ a continuous mapping on an open set U. Let $(\hat{x}, \varepsilon_0) \in U$ be such that $F(\hat{x}, \varepsilon_0) = 0$. Assume that there exists a surjective linear continuous mapping $A : X \to Y$ and a function $c : \mathbb{R}_+ \to \mathbb{R}_+$ with $c(\beta) \downarrow 0$ when $\beta \downarrow 0$ such that, if $x \in \overline{B}(\hat{x}, \beta)$, $x' \in \overline{B}(\hat{x}, \beta)$ and $\varepsilon \in B(\varepsilon_0, \beta)$, then

$$\|F(x',\varepsilon) - F(x,\varepsilon) - A(x'-x)\| \le c(\beta)\|x'-x\|.$$
(1)

Then, denoting by B a bounded right inverse of A, for ε close to ε_0 , $F(\cdot, \varepsilon)$ has, in a neighborhood of \hat{x} , a zero denoted by x_{ε} such that the following expansion holds

$$x_{\varepsilon} = \hat{x} - BF(\hat{x}, \varepsilon) + r(\varepsilon) \quad \text{with } ||r(\varepsilon)|| = o(||F(\hat{x}, \varepsilon)||).$$
(2)

Since (\mathcal{CP}_0^s) is not convex (in general) we will impose a second order condition at u_0 .

Let us consider a more general framework. Let $K \subseteq L^2$ be a nonempty closed and convex set and define $K_s := K \cap L^s$. Consider the problem

$$Min \ J_0(u) \text{ subject to } u \in K_s \qquad (\mathcal{AP})$$

For $u \in K_s$ define

$$\begin{array}{rcl} C(u) & := & \{ v \in L^2 \ ; \ v \in T_{\mathcal{K}}(u) \ \text{and} \ DJ_0(u)v \leq 0 \} \\ C_s(u) & := & \{ v \in L^s \ ; \ v \in T_{\mathcal{K}_s}(u) \ \text{and} \ DJ_0(u)v \leq 0 \}. \end{array}$$

where $T_K(u)$ denotes the *tangent cone* to K at u in L^2 and $T_{K_s}(u)$ is the *tangent cone* to K_s at u in L^s .

• The set K_s is polyhedric in L^s at $u \in K_s$ if, for all $u^* \in N_{K_s}(u)$ (sets of normal of K_s at u), the set $\mathcal{R}_{K_s}(u) \cap (u^*)^{\perp}$ is dense in $\mathcal{T}_{K_s}(u) \cap (u^*)^{\perp}$. If K_s is polyhedric in L^s at each $u \in K_s$ we say that K_s is s-polyhedric.

• We say that J_0 satisfies the local quadratic growth condition at $u \in K_s$ if there exists $\alpha > 0$ and a neighborhood $\mathcal{V}_s \subseteq L^s$ of u such that

 $J_0(u') \geq J_0(u) + \alpha ||u'-u||_2^2 + o(||u'-u||_2^2) \quad \text{for all } u' \in \mathcal{K}_s \cap \mathcal{V}_s.$

It holds that

Theorem

Suppose that $u \in K_s$. If K_s is s-polyhedric and $C_s(u)$ is dense in C(u), then the quadratic growth condition, the second order condition

 $\exists lpha > 0$, such that $D^2 J_0(u)(v, v) \ge lpha ||v||_2^2$ for all $v \in C(u)$

and the punctual relation

 $D^2 J_0(u)(v,v) > 0$ for all $v \in C(u) \setminus \{0\}$

are equivalent.

We have that

Lemma

If
$$K_s = \mathcal{U}_+^s$$
, then K_s is s-polyhedric and $\overline{C_s(u)}^{L^2} = C(u)$.

We will assume the following hypothesis.

(H1) For the adjoint state p_0 , associated to the solution u_0 of (\mathcal{CP}_0^s) , it holds that

 $mes(\{x \in \Omega ; p_0(x) = 0\}) = 0.$

(H2) At any local solution u_0 of (\mathcal{CP}_0^s) , it holds that

 $\exists \alpha > 0, \text{such that } D^2 J_0(u)(v,v) \geq lpha ||v||_2^2 \text{ for all } v \in C(u).$

For $h \in L^2$ let z_h be the unique solution of

$$-\Delta z + \phi'(y_0)z = h$$
 in Ω ; $z = 0$ in $\partial \Omega$

Lemma

If assumptions **(H1)** and **(H2)** hold, then F is differentiable with respect to (y, p) at $(y_0, p_0, 0)$ and the linear application $D_{(y,p)}F(y_0, p_0, 0)$ is an isomorphism. In addition, for every $(\delta_1, \delta_2) \in L^s \times L^s$, we have that

 $D_{(y,p)}F(y_0,p_0,0)^{-1}(\delta_1,\delta_2)$

is the unique solution of the reduced optimality system of

$$\operatorname{Min} \int_{\Omega} \left[\frac{1}{2} N v^2 + \frac{1}{2} \left(1 - p_0 \phi''(y_0) \right) z_{\nu+\delta_1}^2 + \delta_2 z_{\nu+\delta_1} \right] \mathrm{d}x$$

$$(\mathcal{QP}_{\delta_1,\delta_2})$$

subjet to $v \in C(u_0)$.

Define $q_0 := -p_0/N$.

Theorem

Suppose that **(H1)** and **(H2)** hold and let $u_0 \in U^s$ be any local solution of $(C\mathcal{P}_0^s)$. Denote by y_0 and p_0 its associated state and adjoint state respectively. Then there are $\overline{b} > 0$ and $\overline{\varepsilon} > 0$ such that for $\varepsilon \in [0, \overline{\varepsilon}]$ problem $(C\mathcal{P}_{\varepsilon}^{\overline{b},s})$ has a unique solution u_{ε} . In addition, denoting by y_{ε} and p_{ε} the associated state and adjoint state for u_{ε} , the following expansion around (y_0, p_0) holds

$$\begin{pmatrix} y_{\varepsilon} \\ p_{\varepsilon} \end{pmatrix} = \begin{pmatrix} y_0 \\ p_0 \end{pmatrix} + D_{(y,p)}F(y_0,p_0,0)^{-1}F(y_0,p_0,\varepsilon) + r(\varepsilon), \quad (3)$$

where $r(\varepsilon) = o(||F(y_0, p_0, \varepsilon)||_s)$. Moreover, $D_{(y,p)}F(y_0, p_0, 0)^{-1}F(y_0, p_0, \varepsilon)$ is characterized as being the unique solution of $(\mathcal{QP}_{\delta\Pi(\varepsilon),0})$ where

$$\delta \Pi(\varepsilon) := \Pi_{\varepsilon}(q_0) - \Pi_0(q_0).$$

Corollary (Error bounds)

Under the assumptions of theorem 9 we have

(i) The error estimates for $u_{\varepsilon}, y_{\varepsilon}$ and p_{ε} are given by

$$||u_{\varepsilon} - u_{0}||_{s} + ||y_{\varepsilon} - y_{0}||_{2,s} + ||p_{\varepsilon} - p_{0}||_{2,s} = O(||\delta\Pi(\varepsilon)||_{s}).$$
(4)

(ii) The error bound for the control in the infinity norm is given by

$$||u_{\varepsilon} - u_{0}||_{\infty} = O(||\delta \Pi(\varepsilon)||_{\infty}).$$
(5)

(iii) The error estimate for the cost is given by

$$|J_0(u_{\varepsilon}) - J_0(u_0)| = O(||\delta \Pi(\varepsilon)||_s).$$
(6)

Logarithmic barrier

In this section we apply the results obtained to an important example, which is when $\ell(x) = -\log(x)$.

Theorem

Suppose that $\ell(x) = -\log x$ and that hypothesis **(H1)** and **(H2)** hold. Let $\overline{b} > 0$ be such that $(\mathcal{CP}_{\varepsilon}^{\overline{b},s})$ has a unique solution for $\varepsilon > 0$ small enough. Then (i) We have

$$||u_{\varepsilon} - u_{0}||_{\infty} + ||p_{\varepsilon} - p_{0}||_{2,s} + ||y_{\varepsilon} - y_{0}||_{2,s} = O(\sqrt{\varepsilon}), \quad (7)$$
$$|J_{0}(u_{\varepsilon}) - J_{0}(u_{0})| = O(\varepsilon). \quad (8)$$

Theorem (Continuation...)

(ii) If in addition $n \leq 3$, there exists $m \in \mathbb{N}$ such that

$$\{x \in \Omega ; p_0(x) = 0\} = \bigcup_{i=1}^m C_i$$
 (9)

where for every $i \in \{1, ..., m\}$, the set C_i is a regular closed curve and

$$\min_{\{x\in\Omega \ ; \ \rho_0(x)=0\}} \left| \frac{\partial \rho_0}{\partial \hat{n}}(x) \right| \neq 0, \tag{10}$$

then

$$||u_{\varepsilon} - u_{0}||_{2} + ||p_{\varepsilon} - p_{0}||_{2,2} + ||y_{\varepsilon} - y_{0}||_{2,2} = O(\varepsilon^{\frac{3}{4}}).$$
(11)

References

- F. Alvarez, J.F. Bonnans and J. Laurent-Varin "Asymptotic expansion of the opt.imal control under logarithmic penalty: worked example and open problems," INRIA Report RR-6170, 2007.
- F. Alvarez, J. Bolte, J.F. Bonnans and F. Silva "Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems," INRIA Report RR-6863, 2009.
- J.F. Bonnans and F. Silva "Asymptotic expansion for the solution of a penalized control constrained semilinear elliptic problem," in preparation.