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Preliminaries

For s > %n consider the following problem

Min%/Q(y(x) — y(x))%dx + %N/Q u(x)2dx

(CP5): —AY() +(y(x) = Fx)+u(x) for xeQ.
s.t y(x) = 0 for xe€0Q
u(x) € Us.

Here ¢ is C2, increasing and Lipschitz with associated constant L.
The boundary of Qis C?, y € C2, N > 0 and U35 := L5(Q; Ry).

e For every u € L®, the semilinear elliptic equation admits a unique
solution noted y, € J° := W?°n Wol’s.

e Define

() =% [ () = 700+ 3 [

e Note that Jy(u) is not necessarily convex, therefore the classical
proof of existence and uniqueness does not apply.
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Instead we have
Proposition
Problem (CPy) has (at least) one solution ug.

Now, for every u € L® let us define the adjoint state p, associated
with u as the unique solution in J* of

{—Apu(x)+¢'(yu<x>)pu(x) — () —F(x) for xeQ
pu(x) = 0 for x € 0Q

We will write yp := yy, and po := py,. F.O.C. for (CPj) imply that
uo(x) = Mo(—=N"1pg(x)) fora.axeQ

where Mp(x) := max{x, 0}.
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Next we consider a localized penalized version of (CPg). Let £ be a
convex C? function such that

°
. / _
i #6) = o
° 1"
lim () = -
x—0t KI(X)

e There exist constants aq, ap > 0 such that
() <art+ax Vit>1.

Examples:
e /(x) = —log x (logarithmic barrier)

of(x):% p >0, {(x)=xlogx.
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Penalized problem

Let up be a solution of (CP). For b,e > 0 consider the problem
(CPP*) defined as

Min J.(u) := Jo(u) +€/Q€(u(x))dx s. t. u € US N Bs(up, b).

where Bs(up, b) denotes the closed ball in L centered at ug of
radius b. It holds that

Proposition

Problem (CP2*) has (at least) a solution u.. In addition, there
exists a constant C; > 0 such that

'(2us(x)) > —Q?Cl for a.a. x € Q.

and, if € is small enough, there exists a constant K, such that

us(x) < Ky foraa xeq.
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Note that u € L* — [, (u(x))dx is, in general, not continuous
and therefore not differentiable. Nevertheless, thanks to the
proposition above we have that u. € L° which allows us to write
some first order optimality conditions.

Let u. be a local solution of (CP2%). Then there exist \. > 0 such
that

Nuc(x) + pe(x) + el/(u:) + Aeve(x)*"1 = 0 foraa xe€Q
Ae (J|ue — wol|s — b) 0.
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Now we can state the convergence result

Proposition

Suppose that there exists by > 0 such that ug is a strict local
minimum of (CPg) in Bs(uo, bo). Then,

(i) The controls u., solutions of (CP2*) converge as e | 0 to ug in
Ls.

(ii) It holds that J-(u;) — Jo(up) and that Jo(u:) | Jo(uo) -

(iii) The states y. converge to yo in W and the adjoint states p.
converge to pg in W2,

Convergence results and optimality conditions imply that A, =0
for € small enough and therefore

us(x) = Ne(=N""po(x))
where [M.(x) is defined as the solution of

Min 1(z — x)? 4 el(z),
Min (2 =x)" +el(z)



Asymptotic expansion and error estimation

Asymptotic expansion and error estimation

Let up be a solution of (CPZ) and yp, po its associated state and
costate, respectevely. Consider the mapping
F:Y°xY* xRy — L° x L® defined by

Ay +TN(=N"1p)+f —¢(y) >

F(y’p’e)::< Ap+y—y—dy)p

The objective is to obtain an “"asymptotic expansion” for (y., p:),
the state and costate of a localized penalized problem, around
(Y0, Po)-

e It is easy to see that in general F is not differentiable at

(y0, po,0). Therefore, we cannot apply the standard implicit
function theorem in order to obtain such expansion.
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Theorem

(Restoration theorem) Let X and Y be Banach spaces, E a
metric space and F : U C X x E — Y a continuous mapping on
an open set U. Let (X,e0) € U be such that F(X,e0) = 0. Assume
that there exists a surjective linear continuous mapping A: X — Y
and a function ¢ : Ry — Ry with ¢(3) | 0 when 3 | 0 such that,
if x € B(%,8), X' € B(%,3) and € € B(eg, 3), then

IF(x,e) = Flx,e) = A" =) < c(B)IIX" = xII. (1)

Then, denoting by B a bounded right inverse of A, for € close to
o, F(+,€) has, in a neighborhood of X, a zero denoted by x. such
that the following expansion holds

Xxe =X — BF(%,e) + r(e) with ||r(e)|]| = o (||F(X,¢)]l). (2)
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Asymptotic expansion and error estimation

Since (CP§) is not convex (in general) we will impose a second
order condition at ug.

Let us consider a more general framework. Let K C L? be a
nonempty closed and convex set and define Ks := K N L°.
Consider the problem

Min Jo(u) subject to u € K (AP)
For u € Ks define
C(u) = {vel?; ve Tk(u)and Do(u)v <0}
Cs(u) = {vel®; ve Tk(u)and Dfp(u)v < 0}.

where Ty (u) denotes the tangent cone to K at u in L? and
Tk.(u) is the tangent cone to Ks at u in L°.
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Asymptotic expansion and error estimation

e The set K, is polyhedric in L® at u € K, if, for all u* € Nk, (u)
(sets of normal of Ks at u), the set Ry, (u) N (u*)* is dense in
Tk, (u) N (u*)*. If K, is polyhedric in L* at each u € K, we say
that K is s-polyhedric.

e We say that Jy satisfies the local quadratic growth condition at
u € Ks if there exists a > 0 and a neighborhood Vs C L® of u such
that

Jo(u') > Jo(u) + a||u’ — ul|3+ o(||t/ — u|]3) forall v € KsN V.
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Asymptotic expansion and error estimation

It holds that

Theorem

Suppose that u € K. If Ks is s-polyhedric and Cs(u) is dense in
C(u), then the quadratic growth condition, the second order
condition

3o > 0, such that D? Jy(u)(v,v) > al|v|[3 for all v e C(u)
and the punctual relation

D? Jo(u)(v,v) >0 forall v e C(u)\ {0}

are equivalent.
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Asymptotic expansion and error estimation

We have that

2
If Ks = U5, then Ks is s-polyhedric and Cs(u)L = C(u).

We will assume the following hypothesis.

(H1) For the adjoint state pp, asociated to the solution wug of
(CP§), it holds that

mes({x € Q; po(x) =0}) =0.
(H2) At any local solution ug of (CP}), it holds that

Ja > 0,such that D2 Jo(u)(v,v) > a||v|3 forall v € C(u).
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Asymptotic expansion and error estimation

For h € L? let zj, be the unique solution of

~Az+¢'(yo)z=h inQ; z=0 in0Q

Lemma

If assumptions (H1) and (H2) hold, then F is differentiable with
respect to (y, p) at (yo, po,0) and the linear application

D(y.p)F (0, Po,0) is an isomorphism.

In addition, for every (1,02) € L® x L*, we have that

D(y,p)F(yOyP0,0)71(51,52)
is the unique solution of the reduced optimality system of

Min /Q [3NVZ + 5 (1= pod” (%)) 2045, + 02245, ] dx

(QP51,52)
subjet to v € C(up).
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Asymptotic expansion and error estimation

Define qo :== —po/N.

Theorem

Suppose that (H1) and (H2) hold and let ug € U* be any local
solution of (CPg). Denote by yo and py its associated state and
adjoint state respectively. Then there are b > 0 and & > 0 such
that for € € [0,Z] problem (CP2*) has a unique solution u. In
addition, denoting by y. and p- the associated state and adjoint
state for u., the following expansion around (yo, po) holds

( A > - ( = > + Dy ) F (40, Po; 0) " F(yo, Po,2) + 1(2), (3)

where r(e) = o(||F (vo, po,€)||s). Moreover,
D¢y p) F (¥0, Po, 0)*1F(y07 po, €) is characterized as being the unique
solution of (QPsn(),0) where

6MN(e) :=N<(go0) — Mo(qo)-
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Asymptotic expansion and error estimation

Corollary (Error bounds)

Under the assumptions of theorem 9 we have
(i) The error estimates for u.,y. and p. are given by

|lue — wolls + [1v= = yoll2.s + [lp= = poll2.s = O ([[oN(e)[]s) - (4)
(ii) The error bound for the control in the infinity norm is given by
[|ue = tolloo = O ([|8M()]]o0) - (5)

(iii) The error estimate for the cost is given by

[Jo(ue) — Jo(wo)| = O ([[6T(e)]]s) - (6)
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Example
Logarithmic barrier

In this section we apply the results obtained to an important
example, which is when ¢(x) = — log(x).

Theorem

Suppose that {(x) = — log x and that hypothesis (H1) and (H2)
hold. Let b > 0 be such that (CP>®) has a unique solution for

€ > 0 small enough. Then
(i) We have

[luz = tolloo + 1P = poll2s + lly= = yoll2s = O(VE),  (7)

[Jo(ue) — Jo(wo)| = O(e).- (8)
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Theorem (Continuation...)

(ii) If in addition n < 3, there exists m € N such that

{xeQ: p(x)=0}=]JG (9)
i=1
where for every i € {1,...,m}, the set C; is a regular closed curve
and 5
. Po
0, 10

{xeQ ; PO(X) 0} )’ 4 (10)

then

3
|lue = woll2 +[lpe = poll22 + [lye = yoll22 = O(e*). (1)
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Example
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