Asymptotic behavior of values of zero-sum repeated games: evolution equations in discrete and continuous time

G. Vigeral

INRIA-Saclay & CMAP

20 octobre 2009 Conférence 2009 du GdR MOA

Table of contents

- Introduction
 - Stochastic Games
 - Recursive structure and Shapley operator
- Discrete/continuous
 - Evolution equations related to the family v_{λ}
 - Evolution equations related to the sequence v_n

Table of contents

- Introduction
 - Stochastic Games
 - Recursive structure and Shapley operator
- Discrete/continuous
 - Evolution equations related to the family v_{λ}
 - Evolution equations related to the sequence v_n

Definition

A zero-sum stochastic game is a 5-tuple (Ω, A, B, g, ρ) where:

- \bullet Ω is the set of states
- A (resp. B) is the action state of J_1 (resp. J_2)
- $g: A \times B \times \Omega \to \mathbb{R}$ is the payoff function, which will be assumed bounded.
- $\rho: A \times B \times \Omega \to \Delta(\Omega)$ is the transition probability.

How the Game is played

An initial state ω_1 is given, known by each player. During each stage i:

- the players observe the current state ω_i .
- According to the past history, J_1 (resp. J_2) choose a mixed action x_i in $\Delta(A)$ (resp. y_i in $\Delta(B)$).
- An action a_i of player 1 (resp. b_i of player 2) is drawn according to his mixed strategy x_i (resp. y_i).
- This gives the payoff at stage $i g_i = g(a_i, b_i, \omega_i)$.
- A new state ω_{i+1} is drawn according to $\rho(a_i, b_i, \omega_i)$.

Example

Example

Payoff of the repeated game

There are several ways of evaluating a payoff for a given infinite history :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the n-stage game
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_{\lambda}(\omega)$ respectively.

Thus v_n and v_λ are functions from Ω into \mathbb{R} .

Payoff of the repeated game

There are several ways of evaluating a payoff for a given infinite history:

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the n-stage game
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $v_n(\omega)$ and $v_{\lambda}(\omega)$ respectively. Thus v_n and v_{λ} are functions from Ω into \mathbb{R} .

Payoff of the repeated game

There are several ways of evaluating a payoff for a given infinite history :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ is the payoff of the n-stage game
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ is the payoff of the λ -discounted game.

If those games have a value for a given initial state ω , we denote them by $\nu_n(\omega)$ and $\nu_\lambda(\omega)$ respectively.

Thus v_n and v_λ are functions from Ω into \mathbb{R} .

Asymptotic behavior

The main problem which arises is the study of the behavior of v_n when $n \to +\infty$ and of v_λ when $\lambda \to 0$. Does the limits exist, and are they the same ?

We know that the answers to both questions are positive in several cases :

- (Bewley-Kohlberg) Finite stochastic games (Ω , A and B finite)
- (Kohlberg) Absorbing games
- (Everett) Recursive games
- (Aumann-Maschler, Mertens-Zamir) Games with incomplete information and standard signaling
- (Renault) Markov Chain Games with lack of information on one side.

Asymptotic behavior

The main problem which arises is the study of the behavior of v_n when $n \to +\infty$ and of v_λ when $\lambda \to 0$. Does the limits exist, and are they the same ?

We know that the answers to both questions are positive in several cases :

- (Bewley-Kohlberg) Finite stochastic games (Ω, A and B finite)
- (Kohlberg) Absorbing games
- (Everett) Recursive games
- (Aumann-Maschler, Mertens-Zamir) Games with incomplete information and standard signaling
- (Renault) Markov Chain Games with lack of information on one side.

Table of contents

- Introduction
 - Stochastic Games
 - Recursive structure and Shapley operator
- Discrete/continuous
 - Evolution equations related to the family v_{λ}
 - Evolution equations related to the sequence v_n

Recursive structure

The values of the finitely repeated game and of the discounted game satisfy a recursive structure:

$$\begin{array}{lll} v_n(\boldsymbol{\omega}) & = & \displaystyle \sup_{\boldsymbol{x} \in \Delta(A)} \inf_{\boldsymbol{y} \in \Delta(B)} \left\{ \frac{1}{n} g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + \frac{n-1}{n} E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{n-1}) \right\} \\ & = & \displaystyle \inf_{\boldsymbol{y} \in \Delta(B)} \sup_{\boldsymbol{x} \in \Delta(A)} \left\{ \frac{1}{n} g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + \frac{n-1}{n} E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{n-1}) \right\} \\ v_{\boldsymbol{\lambda}}(\boldsymbol{\omega}) & = & \displaystyle \sup_{\boldsymbol{x} \in \Delta(A)} \inf_{\boldsymbol{y} \in \Delta(B)} \left\{ \lambda g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + (1-\lambda) E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{\boldsymbol{\lambda}}) \right\} \\ & = & \displaystyle \inf_{\boldsymbol{y} \in \Delta(B)} \sup_{\boldsymbol{x} \in \Delta(A)} \left\{ \lambda g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + (1-\lambda) E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{\boldsymbol{\lambda}}) \right\} \end{array}$$

Let $\mathscr F$ be the set of bounded functions from Ω into $\mathbb R$ and define $\Psi:\mathscr F$ to itself by

$$\begin{split} \Psi(f)(\omega) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\}. \end{split}$$

Consider also the family of operators $\Phi(\alpha, \cdot)$ for $\alpha \in]0,1]$ defined by the formula $\Phi(\alpha, f) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)$. Then the recursive equations can be written as

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

Let $\mathscr F$ be the set of bounded functions from Ω into $\mathbb R$ and define $\Psi:\mathscr F$ to itself by

$$\begin{split} \Psi(f)(\omega) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\}. \end{split}$$

Consider also the family of operators $\Phi(\alpha,\cdot)$ for $\alpha\in]0,1]$ defined by the formula $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$. Then the recursive equations can be written as

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

Let $\mathscr F$ be the set of bounded functions from Ω into $\mathbb R$ and define $\Psi:\mathscr F$ to itself by

$$\begin{split} \Psi(f)(\omega) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x, y, \omega) + E_{\rho(x, y, \omega)}(f) \right\}. \end{split}$$

Consider also the family of operators $\Phi(\alpha,\cdot)$ for $\alpha\in]0,1]$ defined by the formula $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$. Then the recursive equations can be written as

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

Let $\mathscr F$ be the set of bounded functions from Ω into $\mathbb R$ and define $\Psi:\mathscr F$ to itself by

$$\begin{split} \Psi(f)(\pmb{\omega}) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\}. \end{split}$$

Consider also the family of operators $\Phi(\alpha,\cdot)$ for $\alpha\in]0,1]$ defined by the formula $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$. Then the recursive equations can be written as

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

 $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha,\cdot)$ is $1-\alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) +$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha,\cdot)$ is $1-\alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

 $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha,\cdot)$ is $1-\alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

 $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha,\cdot)$ is $1-\alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

 $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha, \cdot)$ is $1 - \alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

The operator Ψ is topical : it satisfies the two following properties :

Monotonicity

 $f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$

Homogeneity

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

These two properties implies that Ψ is nonexpansive for the infinite norm

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

and thus that $\Phi(\alpha, \cdot)$ is $1 - \alpha$ contracting for the infinite norm

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

$$v_{\lambda} = \Phi^{\infty}(\lambda, 0)$$

Operator approach (Sorin Rosenberg '01)

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha, \cdot): X \to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1 - \alpha}{\alpha} f\right)$$

and then let us define the elements v_n and v_λ of X by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$$

Operator approach (Sorin Rosenberg '01)

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha,\cdot):X\to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1 - \alpha}{\alpha} f\right)$$

and then let us define the elements v_n and v_λ of X by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$$

Operator approach (Sorin Rosenberg '01)

Let (X, ||||) be a Banach space, and let $\Psi : X \to X$ be an nonexpansive operator.

Let us define the family of contracting operators $\Phi(\alpha,\cdot):X\to X$ by the formula

$$\Phi(\alpha, f) = \alpha \Psi\left(\frac{1 - \alpha}{\alpha} f\right)$$

and then let us define the elements v_n and v_{λ} of X by the formulas

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda}) = \Phi^{\infty}(\lambda, 0)$$

Questions

We now settle the following questions:

- Does $\lim_{n\to+\infty} v_n$ exist ?
- Does $\lim_{\lambda \to 0} v_{\lambda}$ exist ?
- Are those two limits equal ?
- Identification of the limit ?

Table of contents

- Introduction
 - Stochastic Games
 - Recursive structure and Shapley operator
- 2 Discrete/continuous
 - Evolution equations related to the family v_{λ}
 - Evolution equations related to the sequence v_n

When λ is fixed

Recall that for any u_0 in X, $v_{\lambda} = \Phi^{\infty}(\lambda, u_0)$

Proposition

When λ is fixed, the solution u of the evolution equation

$$u(t) + u'(t) = \Phi(\lambda, u(t))$$
 ; $u(0) = u_0 \in X$ (1)

satisfies

$$\lim_{t\to+\infty}u(t)=v_{\lambda}$$

Sketch of proof

Lemma

The solution of (1) satisfies $||u(t) - v_{\lambda}|| \leq \frac{||u'(t)||}{\lambda}$.

Lemma

If
$$f$$
 satisfies $||f(t)+f'(t)|| \le (1-\lambda(t))||f(t)||$, then

$$||f(T)|| \le ||f(0)||e^{-\int_0^T \lambda(t)dt}.$$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let h go to 0 and we use the first lemma.

Sketch of proof

Lemma

The solution of (1) satisfies $||u(t) - v_{\lambda}|| \leq \frac{||u'(t)||}{\lambda}$.

Lemma

If
$$f$$
 satisfies $||f(t)+f'(t)|| \le (1-\lambda(t))||f(t)||$, then

$$||f(T)|| \le ||f(0)||e^{-\int_0^T \lambda(t)dt}.$$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let h go to 0 and we use the first lemma

Sketch of proof

Lemma

The solution of (1) satisfies $||u(t) - v_{\lambda}|| \leq \frac{||u'(t)||}{\lambda}$.

Lemma

If f satisfies $||f(t)+f'(t)|| \le (1-\lambda(t))||f(t)||$, then

$$||f(T)|| \le ||f(0)||e^{-\int_0^T \lambda(t)dt}.$$

Let us apply the second lemma to $f_h = \frac{u(t+h)-u(t)}{h}$, so that $||f_h(t)|| \le ||f_h(0)||e^{-\lambda t}$. We then let h go to 0 and we use the first lemma.

Non autonomous case

We are now interested in the equation of the type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
 ; $u(0) = u_0 \in X$ (2)

where λ is a continuous function from \mathbb{R}^+ into]0,1[.

If the parametrization λ converge slowly enough to 0, because of the previous result we expect the trajectory to be asymptotically close to the location of the fixed points $v\lambda$.

Non autonomous case

We are now interested in the equation of the type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
 ; $u(0) = u_0 \in X$ (2)

where λ is a continuous function from \mathbb{R}^+ into]0,1[. If the parametrization λ converge slowly enough to 0, because of the previous result we expect the trajectory to be asymptotically close to the location of the fixed points $v\lambda$.

Any accumulation point v of v_n or v_λ is a fixed point of $\Phi(0,\cdot)$, but there may be many of these (for example in games with incomplete information on both sides any saddle function). The evolution equation (2) can be viewed as a perturbation of

$$u(t) + u'(t) = \Phi(0, u(t))$$

and if the perturbation is strong enough it will select a "good" fixed point (see also Attouch Cominetti '96; Cominetti Peypouquet Sorin '08)

Proposition

If $\lambda \notin \mathcal{L}^1$, then the asymptotic behavior of the solution of (2) doesn't depend of u_0 .

Hypothesis on $\Phi(\cdot,x)$

From now on we assume that:

Hypothesis

$$\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0,1[^2, \ \forall x \in X,$$

$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{\mathscr{H}}$$

Remark

This hypothesis is satisfied as soon as Ψ is the Shapley operator of any game with a bounded payoff.

Hypothesis on $\Phi(\cdot,x)$

From now on we assume that:

Hypothesis

$$\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0, 1[^2, \ \forall x \in X,$$
$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{\mathscr{H}})$$

Remark

This hypothesis is satisfied as soon as Ψ is the Shapley operator of any game with a bounded payoff.

Consequences (I)

Proposition

Let λ and $\widetilde{\lambda}$ be two parametrization, and let u and \widetilde{u} be the corresponding solutions of (2). If $\lambda \notin \mathscr{L}^1$, if u is bounded and if $\lambda(t) \sim \widetilde{\lambda}(t)$ then $\lim_{t \to +\infty} \|u(t) - \widetilde{u}(t)\| = 0$

Corollary

If $\lambda(t) \to \lambda_0 > 0$ then $u(t) \to v_{\lambda_0}$.

Consequences (I)

Proposition

Let λ and $\widetilde{\lambda}$ be two parametrization, and let u and \widetilde{u} be the corresponding solutions of (2). If $\lambda \notin \mathscr{L}^1$, if u is bounded and if $\lambda(t) \sim \widetilde{\lambda}(t)$ then $\lim_{t \to +\infty} \|u(t) - \widetilde{u}(t)\| = 0$

Corollary

If
$$\lambda(t) \to \lambda_0 > 0$$
 then $u(t) \to v_{\lambda_0}$.

Consequences(II)

Proposition

If
$$\lambda \downarrow 0$$
 is in \mathscr{C}^1 and if $\lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0$, then $\|u(t) - v_{\lambda(t)}\| \to 0$

If $\lim_{t\to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$ then the rate of convergence is in $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $\|u(t) - v_{\lambda(t)}\| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Consequences(II)

Proposition

$$\begin{split} &\textit{If } \lambda \downarrow 0 \textit{ is in } \mathscr{C}^1 \textit{ and if } \lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0, \textit{ then } \|u(t) - v_{\lambda(t)}\| \to 0 \\ &\textit{If } \lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0 \textit{ then the rate of convergence is in } O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right). \end{split}$$

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $||u(t) - v_{\lambda(t)}|| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Consequences(II)

Proposition

$$\begin{split} &\textit{If } \lambda \downarrow 0 \textit{ is in } \mathscr{C}^1 \textit{ and if } \lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0, \textit{ then } \|u(t) - v_{\lambda(t)}\| \to 0 \\ &\textit{If } \lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0 \textit{ then the rate of convergence is in } O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right). \end{split}$$

Corollary

If $\lambda(t) \sim \frac{1}{t^{\alpha}}$ for an $\alpha \in]0,1[$ then $\left\| u(t) - v_{\lambda(t)} \right\| \to 0$. In particular v_{λ} converges when $\lambda \to 0$ if and only if u(t) converges when $t \to +\infty$.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of X by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $\|w_n - v_{\lambda_n}\| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_λ converges to the same limit.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of X by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $\|w_n - v_{\lambda_n}\| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_{λ} converges to the same limit.

Back to discrete time

For every λ_n sequence of numbers in]0,1[let us define the sequence w_n of element of X by

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition

If
$$\lambda_n \to 0$$
 and $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, then $\|w_n - v_{\lambda_n}\| \to 0$

Corollary

If $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, and if w_n converges, then v_λ converges to the same limit.

Table of contents

- Introduction
 - Stochastic Games
 - Recursive structure and Shapley operator
- 2 Discrete/continuous
 - Evolution equations related to the family v_{λ}
 - Evolution equations related to the sequence v_n

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

that is

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$

where we denote by A the maximal monotone operator $Id - \Psi$.

Proposition (Mivadera Oharu '70

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||$$

$$\left\| \frac{U(n)}{n} - v_n \right\| \to 0$$

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$. We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

that is

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$

where we denote by A the maximal monotone operator $Id - \Psi$.

Proposition (Miyadera Oharu '70

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||$$
$$\left|\left|\frac{U(n)}{n} - v_n\right|\right| \to 0.$$

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

that is

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$.

where we denote by A the maximal monotone operator $Id - \Psi$.

Proposition (Miyadera Oharu '70

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||.$$

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||.$$

Let us denote $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

We consider the differential equation

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

that is

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$.

where we denote by A the maximal monotone operator $Id - \Psi$.

Proposition (Miyadera Oharu '70)

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||.$$

$$\left\|\frac{U(n)}{n}-v_n\right\|\to 0.$$

By rescaling,

Proposition

Let $\tau(t) = t + \ln(1+t)$, and let u be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Then $||u(n) - v_n|| \rightarrow 0$.

Corollary

Assume hypothesis \mathscr{H} and let u be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{t}, u(t)\right)$$

Then $||u(n) - v_n|| \to 0$

By rescaling,

Proposition

Let $\tau(t) = t + \ln(1+t)$, and let u be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Then $||u(n) - v_n|| \to 0$.

Corollary

Assume hypothesis \mathscr{H} and let u be the solution of the evolution equation

$$u(t) + u'(t) = \Phi\left(\frac{1}{t}, u(t)\right).$$

Then $||u(n) - v_n|| \to 0$.

Thank you for your attention

Thank you for your attention