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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minx∈K f (x)

NP-hard problem: it captures, for instance, computing α(G )

(the maximum cardinality of a stable set in graph G )

when K is a hypercube or a simplex and deg(f ) = 2,

or K is a sphere and deg(f ) = 3

α(G ) = max
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[Motzkin-Straus’65, Nesterov’03]
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This lecture: hierarchies of bounds for polynomial optimization:

fmin = min
x∈K

f (x)

• Quick recap on the (usual) sums-of-squares based lower bounds

• Main focus on the measure-based upper bounds, in particular on

the analysis of their convergence rate



Lasserre/Parrilo
sums-of-squares based

lower bounds



‘Sums-of-squares’ (SoS) lower bounds

(P) fmin = min
x∈K

f (x) = sup
λ∈R

λ s.t. f (x)− λ ≥ 0 on K

When K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} with gj ∈ R[x ]

One can replace the hard condition: “f (x)− λ ≥ 0 on K”

by the easier condition:

“f (x)− λ is a ‘weighted sum’ of sums of squares of polynomials”

 Get the bounds:

f(r) = sup λ s.t. f − λ = s0︸︷︷︸
deg≤2r

+ s1g1︸︷︷︸
deg≤2r

+ . . .+ smgm︸ ︷︷ ︸
deg≤2r

, sj SoS

I f(r) ≤ f(r+1) ≤ fmin

I Asymptotic convergence: f(r) ↗ fmin as r →∞ [Lasserre 2001]

[Putinar 1993]: p > 0 on K compact (*) =⇒ p has such SoS dec.I Compute f(r) efficiently for fixed r , with semidefinite programming
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Testing sums of squares of polynomials with SDP

f (x) =
∑
|α|≤2d

fαx
α is a sum of squares of polynomials

m

f (x) =
∑
i

pi (x)2 =
∑
i

(
pi

T (xα)|α|≤d

)2

m

f (x) =
∑
i

(xα)Tpi pi
T (xα) = (xα)T

(∑
i

pi pi
T

︸ ︷︷ ︸
M�0

)
(xα)

m

The SDP:


∑

β,γ|β+γ=α

Mβ,γ = fα (|α| ≤ 2d)

M � 0

is feasible

Gram-matrix method [Powers-Wörmann 1998]
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Example

Is the polynomial f (x , y) = x4 + 2x3y + 3x2y2 + 2xy3 + 2y4 a SoS?

f (x , y) = (x2 xy y2)

a b c
b d e
c e f


︸ ︷︷ ︸

M�0?

x2

xy
y2



Equate coefficients on both sides:

x4: a = 1 x3y : 2b = 2 x2y2: 2c + d = 3 xy3: 2e = 2 y4: f = 2

M =

1 1 c
1 3− 2c 1
c 1 2

 � 0 ⇐⇒ −1 ≤ c ≤ 1

c = −1  f = (x2 + xy − y2)2 + (y2 + 2xy)2

c = 0  f = (x2 + xy)2 + 3
2 (xy + y2)2 + 1

2 (xy − y2)2
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 � 0 ⇐⇒ −1 ≤ c ≤ 1

c = −1  f = (x2 + xy − y2)2 + (y2 + 2xy)2

c = 0  f = (x2 + xy)2 + 3
2 (xy + y2)2 + 1

2 (xy − y2)2



Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)
Under the conditions of Putinar’s theorem: K compact (+ Archimedean),
there exists a constant c = cK such that for any degree d polynomial f :

fmin − f(r) ≤ 6d3n2dLf
1

c
√

log r
c

for all r ≥ ce(2d2nd )c

Any better convergence analysis?

Yes for the unit sphere

Theorem (Fang-Fawzi 2019)
Let K = Sn−1 the unit sphere, f homogeneous polynomial of degree 2d .

There exists a constant Cd such that

fmin − f(r) ≤ (fmax − fmin)
C 2
d n

2

r2
for r ≥ Cdn

This improves the earlier O(1/r) result of [Doherty-Wehner 2012]
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Lasserre measure-based
upper bounds



Basic observation: identify points x ∈ K with Dirac measures on K

fmin = min
x∈K

f (x) = min
ν probability measure on K

∫
K

f (x)dν(x)

Theorem (Lasserre 2011)
For K compact, one may restrict to dν(x) = h(x)dµ(x), where

µ is a fixed measure with support K and h is a sum-of-squares density:

fmin = inf
∫
K
f (x)h(x) dµ s.t. h SoS,

∫
K
h(x) dµ = 1

Bound degree: deg(h) ≤ 2r  upper bounds f (r) converging to fmin:

f (r) = inf
∫
K
f (x)h(x) dµ s.t. h SoS,

∫
K
h(x) dµ = 1, deg(h) ≤ 2r

I fmin ≤ f (r), f (r) ↘ fmin, f (r) can be computed via SDP

I but one needs to know the moments of µ: mα =
∫
K
xαdµ(x)

to compute
∫
K
f (x)dµ =

∫
K

(
∑
α fαx

α)dµ =
∑
α fαmαI mα known if µ Lebesgue on cube, ball, simplex; Haar on sphere,. . .
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Example: Motzkin polynomial on K = [−2, 2]2

f (x1, x2) = x4
1 x

2
2 + x2

1 x
4
2 − 3x2

1 x
2
2 + 1

Four global minimizers: (−1,−1), (−1, 1), (1,−1), (1, 1)
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 12
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 16
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 20
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 24
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Goal: Analyze rate of convergence of error range:

E (r)(f ) = E
(r)
µ,K (f ) := f (r) − fmin

compact K E (r)(f ) µ

Hypercube
f linear Θ(1/r2) (1− x2)λ, λ > −1 de Klerk-L’19
any f O(1/r2) Chebyshev: λ = −1/2 de Klerk-L’19

any f O(1/r2) λ ≥ −1/2 Slot-L’20

Sphere
f homogeneous O(1/r) Haar Doherty-Wehner’12

any f O(1/r2) Haar de Klerk-L’20

Ball
any f O(1/r2) (1− ‖x‖2)λ, λ ≥ 0 Slot-L’20

Simplex, ‘round’ O(1/r2)

Lebesgue

Slot-L’20
convex body

Convex body O((log r)2/r2) Lebesgue Slot-L’20
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Key proof strategies

(1) Reformulate f (r) as an eigenvalue problem and

relate f (r) to roots of orthogonal polynomials

 O(1/r2) rate for the Chebyshev measure on [−1, 1]

and other measures (with Jacobi weight) for linear polynomials

() Use tricks (Taylor approx., integration, ’local similarity’) to

transport the O(1/r2) rate for [−1, 1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies

(2) Design ‘nice’ SoS polynomial densities

‘that look like the Dirac delta at a global minimizer’,

(combined with using push-up measures) to get the O((log r)2/r2)

rate for general K by reducing to the univariate case of [0, 1]
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First basic trick:
reduction to the analysis of

quadratic and separable
polynomials



Analyze simpler upper estimators

Lemma
Let a ∈ K be a global minimizer of f in K .

Set γ = maxx∈K ‖∇2f (x)‖.

By Taylor’s theorem, f has a quadratic, separable upper estimator:

f (x) ≤ f (a) + 〈∇f (a), x − a〉+ γ‖x − a‖2 := g(x),

where f (a) = g(a)  fmin = gmin.

Hence, for all r ∈ N,
E (r)(f ) ≤ E (r)(g).

 It suffices to analyze quadratic polynomials

and sometimes we may even obtain linear upper estimators!
(e.g. for the sphere)
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Eigenvalue reformulation

&

application to the

univariate case: K = [−1, 1]



µ given measure with support K

f (r) = min
∫
K
f h dµ s.t. h SoS,

∫
K
h dµ = 1, deg(h) ≤ 2r

Choose an orthonormal basis {pα : |α| ≤ 2r} of R[x ]2r w.r.t. µ and set

Mr (f ) :=
(∫

K
f pαpβ dµ

)
|α|,|β|≤r

Note: h SoS ⇐⇒ h = ((pα)|α|≤r )
TX (pα)|α|≤r for some X � 0

 
∫
K
f h dµ = 〈Mr (f ),X 〉,

∫
K
h dµ = Tr(X )

f (r) = min
{
〈Mr (f ),X 〉 s.t. Tr(X ) = 1, X � 0

}
= λmin(Mr (f ))

For K = [−1, 1], can analyze f (r) for Chebyshev measure dµ = (1− x2)−1/2dx
and any Jacobi measure dµ = (1− x2)λdx (λ > −1) when f is linear

Recall it is enough to deal with f quadratic: f (x) = x , f (x) = x2 + kx
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K = [−1, 1], linear case: f (x) = x

Theorem (classical theory of orthogonal polynomials)
Let {p0, p1, p2, . . .} be a (graded) orthonormal basis of R[x ] w.r.t. µ.
Then the polynomials pk satisfy a 3-term recurrence:

xpk = akpk+1 + bkpk + ak−1pk−1 for k ≥ 0, p0 constant
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−1
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Theorem (de Klerk-L’19)
For the Jacobi measure dµ = (1− x2)λdx with λ > −1, and f (x) = x :

f (r) = λmin(Mr (x)) = smallest root of pr+1 = −1 + Θ(1/r2) = fmin + Θ(1/r2)
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Chebyshev measure on K = [−1, 1], f (x) = x2 + kx

(1) Minimizer on boundary (i.e., k 6∈ [−2, 2]): Then f has a linear upper

estimator: f (x) ≤ g(x) := kx + 1  E (r)(f ) ≤ E (r)(g) = O(1/r2)

NB: This holds for any Jacobi measure (1− x2)λdx , λ > −1

(2) Minimizer in interior: Then, f (r) = λmin(Mr (f )) where

Mr (f ) =
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Write Mr (f ) =

∗ ∗ . . .
∗ ∗ . . .
...

... B

, with B 5-diagonal Toeplitz of size r − 1

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

λmin(Mr (f )) ≤ λmin(B) ≤ λ3(C ) = −k2

4
+O(1/r2) = fmin +O(1/r2)

Theorem (de Klerk-L’19)
For the Chebyshev measure on [−1, 1]n and any polynomial f :

f (r) − fmin = O(1/r2)
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O
(

1
r2

)
convergence rate

for the sphere



Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a quadratic

linear

upper estimator:

f (x) ≤ f (a) +∇f (a)T (x − a) + γ‖x − a‖2

(2− 2xTa)

Up to rotation and translation, we may assume f (x) = x1

(2) Reduce to the analysis for the interval [−1, 1]:

Key fact: Let h(x1) be a degree 2r univariate optimal SoS density

for the univariate problem min
x1∈[−1,1]

x1 (with (1− x2
1 )(n−3)/2dx1)

Then h(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min

x∈Sn−1
x1 (with µ Haar measure)

This is based on the integration trick:

1 =

∫ 1

−1

h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

h(x1)dµ

− 1 + O
( 1

r2

)
=

∫ 1

−1

x1h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

x1h(x1)dµ

[de Klerk-L’20]
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Up to rotation and translation, we may assume f (x) = x1

(2) Reduce to the analysis for the interval [−1, 1]:

Key fact: Let h(x1) be a degree 2r univariate optimal SoS density

for the univariate problem min
x1∈[−1,1]

x1 (with (1− x2
1 )(n−3)/2dx1)

Then h(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min

x∈Sn−1
x1 (with µ Haar measure)

This is based on the integration trick:

1 =

∫ 1

−1

h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

h(x1)dµ

− 1 + O
( 1

r2

)
=

∫ 1

−1

x1h(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

x1h(x1)dµ

[de Klerk-L’20]



The bound 1/r 2 is tight for linear polynomials

Theorem (de Klerk-L’20)
For any linear polynomial f (x) = (−1)d(cT x)d , the analysis is tight:

E (r)(f ) = Ω
( 1

r2

)

This relies on the following link to cubature rules:

Fact (Martinez et al.’19)
Let {(x (i),wi ) : i ∈ [N]} be a positive cubature rule on K that is

exact for integrating polynomials of degree d + 2r . If f has degree d

f (r) =

∫
K

fhdµ =
N∑
i=1

wi f (x (i))h(x (i)) ≥ min
i∈[N]

f (x (i))

=1︷ ︸︸ ︷∑
i

wih(x (i)) ≥ fmin

For K = Sn−1, use cubature rule from the roots of Gegenbauer polys.
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‘Local similarity’ trick

&

Application to box, ball,

simplex, round convex body



‘Local similarity’: lift results from (K̂ , ŵ) to (K ,w)

Lemma (Slot-L’20)
Let a ∈ K be a global minimizer of f in K . Assume:

K ⊆ K̂ , w a weight function on K , ŵ weight function on K̂ satisfy:

(1) K , K̂ are ‘locally similar’ at a:

K ∩ Bε(a) = K̂ ∩ Bε(a) for some ε > 0.

K

K̂

K

K̂

(2) w , ŵ are ‘locally similar’ at a:

m · ŵ(x) ≤ w(x) on int(K ) ∩ Bε(a) for some ε,m > 0.

(3) w(x) ≤ ŵ(x) for all x ∈ int(K ).

Then, f has an upper estimator g on K̂ , exact at a, satisfying

E
(r)
K ,w (f ) ≤ E

(r)

K̂ ,ŵ
(g).

Note: (1),(2) clearly hold if a ∈ int(K )
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(2) w , ŵ are ‘locally similar’ at a:
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m · ŵ(x) ≤ w(x) on int(K ) ∩ Bε(a) for some ε,m > 0.
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Transport known O(1/r 2) rate for K̂ = [−1, 1]

(1) to K = [−1, 1], with w(x) = (1− x2)λ, λ ≥ −1/2, any f

[using Chebyshev weight ŵ(x) = (1− x2)−1/2]

(2) to any K , with w = 1, when minimizer a lies in the interior of K

[using K ⊆ K̂ = [−1, 1]n with ŵ = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K̂ = [0, 1]n with ŵ = 1]

φ
(4) to K ball, with w(x) = (1− ‖x‖2)λ, λ ≥ 0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w = 1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K̂ with ŵ = 1]
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SoS approximations of

Dirac measures

&

application to general

convex bodies



Cheaper bounds using the ‘push-forward measure’

• µ measure supported by K (e.g., Lebesgue measure)

 µf push-forward of µ by f , supported by f (K ) = [fmin, fmax] ⊆ R:∫
f (K)

ϕ(t)dµf (t) =

∫
K

ϕ(f (x))dµ(x) for any function ϕ : R→ R

• This motivates defining the weaker ‘univariate’ bounds:

τr (f ) = min
∫
K
f (x)s(f (x))dµ(x) s.t.

∫
K
s(f (x))dµ(x) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

= min
∫
f (K)

t · s(t)dµf (t) s.t.
∫
f (K)

s(t)dµf (t) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

Hence: fmin ≤ f (rd) ≤ τr (f ) if d = deg(f )
Theorem: The bounds τr (f ) converge to fmin [Lasserre 2019]

Can show convergence rate O
(

(log r)2

r2

)
[L-Slot 2020]

τr (f ) = smallest root of orthogonal polynomial pr+1 w.r.t. measure µf ,
but these are not known in general!  needs another approach
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• May assume f (K ) = [0, 1] (up to affine transformation)

• Use the (half-)needle polynomials shr (t) of [Kroó-Swetits 1992]
(h > 0, r ∈ N, defined as squares of Chebyshev polynomials)
with degree 4r and satisfying

shr (t)


= 1 at t = 0
≤ 1 at t ∈ [0, 1]

≤ 4e−
1
2

√
hr at t ∈ [h, 1]

-1.5 -1 -h 0 h 1 1.5

0.5

1

In green, the half-needle polynomial with h = 1/5

Theorem (L-Slot 2020)
Assume K is a convex body. Then

τr (f )− fmin = O
( (log r)2

r2

)

Key: Can analyze the error when using the needle polynomials shr

(with h = (log r)2/r2) as univariate SoS density

Open question: Can one get rid of the factor (log r)2?
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Concluding remarks

I Can compute f (r) as smallest eigenvalue of a matrix with size O(nr ),
and the bounds τr (f ) as smallest eigenvalue of a matrix of size r + 1
... but computing its entries is more expensive

since one needs to integrate powers of f

I The error analysis for f (r) extends to rational functions f [dK-L’19]

I Application to the general problem of moments:

b0 := inf
µ

∫
K

f0 dµ s.t.

∫
K

fi dµ = bi (i ∈ [m])

∆(r) := min
h∈Σ2r

max
i=0,1,...,m

∣∣∣∣∫
K

fih dµ− bi

∣∣∣∣
If ε(r) is convergence rate for polynomial minimization on K , then

∆(r) = O(
√
ε(r))

[De Klerk,Postek,Kuhn’19]
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Thank you!


