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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)
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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)

NP-hard problem: it captures, for instance, computing o(G)
(the maximum cardinality of a stable set in graph G)

when K is a hypercube or a simplex and deg(f) = 2,
or K is a sphere and deg(f) =3
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This lecture: hierarchies of bounds for polynomial optimization:

frnin = )r(ng}r(l f(x)

e Quick recap on the (usual) sums-of-squares based lower bounds

e Main focus on the measure-based upper bounds, in particular on

the analysis of their convergence rate



LASSERRE/PARRILO
SUMS-OF-SQUARES BASED
LOWER BOUNDS



‘Sums-of-squares’ (SoS) lower bounds

(P)| fmin = )I’(Tél}? f(x) = /s\LEJPR A st f(x)=A>0 on K
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‘Sums-of-squares’ (SoS) lower bounds

foin = minf(x) = sup A sit. f(x)—A>0 on K
xeK

AER

When

K={xeR": gé1(x)>0,...

»gm(X) > 0}

with g; € R[x]

One can replace the hard condition: “f(x) — X >0 on K"
by the easier condition:

“f(x) — A is a ‘weighted sum’ of sums of squares of polynomials”

~> Get the bounds:

fry=sup X st. f—A= s + sig1 +...+ Su&m, 5 S0S
~~ ~—~ ~——
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» Asymptotic convergence: f(,) / fnin as r — oo

[Lasserre 2001]



‘Sums-of-squares’ (SoS) lower bounds

fonin = min f(x) = A st f(x)—A>0 K
(P) min (x) E\ZPR s.t. f(x) on

When| K={xeR": gi(x)>0,...,8m(x) >0} with g; € R[x]

One can replace the hard condition: “f(x) — X >0 on K"
by the easier condition:
“f(x) — A is a ‘weighted sum’ of sums of squares of polynomials”

~> Get the bounds:

fly=sup A st. f—A= s5 + sig +...+ Sn8m, 5 S0oS
~~ ~—~ ~——

deg<2r  deg<2r deg<2r
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» Asymptotic convergence: f,) / fnin as r — oo [Lasserre 2001]

[Putinar 1993]: p > 0 on K compact (*) = p has such SoS dec.
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(P) foin = minf(x) = sup A sit. f(x)—A>0 on K

xeK AER
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with g; € R[x]

One can replace the hard condition: “f(x) — X >0 on K"
by the easier condition:
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~> Get the bounds:
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[Lasserre 2001]

» Compute f,) efficiently for fixed r, with semidefinite programming
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Testing sums of squares of polynomials with SDP

f(x) = Z fax® is a sum of squares of polynomials

la|<2d
g
)= p0f = 3 (A7 rce)
g
=3 ) ma () = () (Y m ) (x)



Testing sums of squares of polynomials with SDP

f(x) = Z fax® is a sum of squares of polynomials
| <2d
)

f(x)zz_:p;(X)2 = Z(ET(X“)\awgd>2

y
) =3 ) AT ) = )T (m ) ()

i
———
M>0

)

S My =fa (jo] <20)
The SDP: ¢ 551y=a is feasible

M =0

Gram-matrix method [Powers-Wérmann 1998]
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Is the polynomial (x,y) = x* + 2x3y + 3x%y? + 2xy® + 2y* a S0S?
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c=-1 ~ f=0+x—y)+ (> +2x)



Example

Is the polynomial (x,y) = x* + 2x3y + 3x%y? + 2xy® + 2y* a S0S?

a b c x?

flxy) =0 xyy?) | b d el |xy
c e f y?
M=0?

Equate coefficients on both sides:
xta=1 x3y:2b=2 x?’y%22c+d=3 xy>2e=2 ytf=2

1 1 c
M=|1 3—-2c 1] >0 «— -1<c¢c<1
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c=-1 ~ f=(C+xy—y?)?+(y* +2x)
c=0 ~ F=(P+xy)?+3(xy+y?)?+3(xy —y?)?



Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)

Under the conditions of Putinar’s theorem: K compact (+ Archimedean),
there exists a constant ¢ = ck such that for any degree d polynomial f:

frmin — f(,) < 6d3n2L 2 for all r > ce(2d*n)*

{/log £



Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)

Under the conditions of Putinar’s theorem: K compact (+ Archimedean),
there exists a constant ¢ = ck such that for any degree d polynomial f:

frmin — f(,) < 6d3n2L 2 for all r > ce(2d*n)*

{/log £

Any better convergence analysis?



Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)

Under the conditions of Putinar’s theorem: K compact (+ Archimedean),
there exists a constant ¢ = ck such that for any degree d polynomial f:

fmin — f(r) < 6d3n2 L, —2 for all r > ce(2d*n)*

\/log £

Any better convergence analysis?
Yes for the unit sphere

Theorem (Fang-Fawzi 2019)

Let K = S"1 the unit sphere, f homogeneous polynomial of degree 2d.
There exists a constant C4 such that
C2n?
7"—min - fir) S (fmax - fmin)iT for r Z Cdn

This improves the earlier O(1/r) result of [Doherty-Wehner 2012]



LLASSERRE MEASURE-BASED
UPPER BOUNDS
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For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and h is a sum-of-squares density:

fmin = inf [, f(x)h(x) dp s.t. h SoS, [ h(x) dp=1

Bound degree: deg(h) < 2r ~» upper bounds (") converging to fuin:

f) =inf [ f(x)h(x) dp st. hSoS, [, h(x) du=1, deg(h) < 2r

> £, < F0) () ¢ Fmin, £(") can be computed via SDP
> but one needs to know the moments of i m, = [, x*dp(x)
to compute [, f(x)dp = [, (3, fax®)dp =", fama



Basic observation: identify points x € K with Dirac measures on K

fonin = min f(x) = ~ min /Kf(x)dz/(x)

xeK v probability measure on K

Theorem (Lasserre 2011)
For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and h is a sum-of-squares density:

fmin = inf [, f(x)h(x) dp s.t. h SoS, [ h(x) dp=1

Bound degree: deg(h) < 2r ~» upper bounds (") converging to fuin:

f) =inf [ f(x)h(x) dp st. hSoS, [, h(x) du=1, deg(h) < 2r

> £, < F0) () ¢ Fmin, £(") can be computed via SDP
> but one needs to know the moments of i m, = [, x*dp(x)

» m, known if ;1 Lebesgue on cube, ball, simplex; Haar on sphere,...



Example: Motzkin polynomial on K = [-2, 2]

4.2, 2.4 2.2
f(x1,x2) = X7 x5 + x7x5 —3x;x5 +1

Four global minimizers: (—-1,-1), (-1,1), (1,-1), (1,1)
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 12
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 20
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density h of degree 24
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Key proof strategies

(1) Reformulate (") as an eigenvalue problem and
relate (") to roots of orthogonal polynomials

~~ O(1/r?) rate for the Chebyshev measure on [—1,1]

and other measures (with Jacobi weight) for linear polynomials

() Use tricks (Taylor approx., integration, 'local similarity’) to
transport the O(1/r?) rate for [~1,1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies

(2) Design ‘nice’ SoS polynomial densities
‘that look like the Dirac delta at a global minimizer’,
(combined with using push-up measures) to get the O((log r)?/r?)
rate for general K by reducing to the univariate case of [0, 1]



FIRST BASIC TRICK:
REDUCTION TO THE ANALYSIS OF
QUADRATIC AND SEPARABLE
POLYNOMIALS



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek | V2(x)]|.
By Taylor's theorem, f has a quadratic, separable upper estimator:

f(x) < f(a) +(VF(a),x — a) +7llx — al|* := g(x),

where f(a) = g(a) ~ fmin = Gmin-
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Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek || V2F(x)]|.

By Taylor's theorem, f has a quadratic, separable upper estimator:
f(x) < f(a) + (VF(a),x — a) +lIx — a||* = g(x),

where f(a) = g(a) ~ frnin = 8Bmin-

Hence, for all r € N,
EN(F) < EN(g).

~ It suffices to analyze quadratic polynomials

and sometimes we may even obtain linear upper estimators!
(e.g. for the sphere)



EIGENVALUE REFORMULATION
&
APPLICATION TO THE
UNIVARIATE CASE: K = [—1,1]
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/4 given measure with support K

F) =min [ fhdp st. hSoS, [ hdu=1, deg(h) <2r

Choose an orthonormal basis {p,, : |a| < 2r} of R[x]z, w.r.t. 1 and set

M, (f) :== ([, f Paps d/l’)|a\,\5\§r

Note: hSoS <= h=((pPa)jaj<r)" X(Pa)jaj<, for some X =0

o [ fhdp = (M), X), [ hdp=Tr(X)

F0 = min { (M(F),X) st T(X) =1, X =0} = Auin(M (1))

For K = [~1,1], can analyze (") for Chebyshev measure dj = (1 — x?)~/?dx
and any Jacobi measure dy = (1 — x?)*dx (A > —1) when f is linear

Recall it is enough to deal with f quadratic: f(x) = x, f(x) = x* + kx
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K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)

Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. s.
Then the polynomials py satisfy a 3-term recurrence:

Xpk = akPk+1 + bkpk + ak—1pk—1  for k >0, po constant

~ the matrix M,(x) = (fil Xpipj d/z,)

eigenvalues are the roots of p, 1

r
is tri-diagonal and its
i,j=0

Theorem (de Klerk-L'19)
For the Jacobi measure dy = (1 — x?)*dx with A\ > —1, and f(x) = x:

F) = Amin(M,(x)) = smallest root of p,y1 = —1 + O(1/r?) = foin + O(1/r?)
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Chebyshev measure on K = [—1,1], f(x) = x* + kx

(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)*dx, A > —1

(2) Minimizer in interior: Then, (") = X\pi(M,(f))  where

M, (f) = (f_ll(x2 + kx)p,-pjdu) ~is b-diagonal ‘almost’ Toeplitz:

K 2
P N O
IV AN B S
% £ | a b c
1 | b a b c
Mr(f) = I e b a=3lb=%k c=1

o
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Write M,(f)=|* * ---|, with B 5-diagonal Toeplitz of size r — 1
. . B

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

Amin(B) < X3(C) = —k—2+0(1/r2): ain + O(1/17)

)‘min(Mr(f)) - 4

IA



Write M,(f)=|* * ---|, with B 5-diagonal Toeplitz of size r — 1
. . B

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

)\min(Mr(f)) S )\min(B) S )\3(C) = _kIZJf_O(l/rQ): min+0(1/r2)

Theorem (de Klerk-L'19)
For the Chebyshev measure on [—1,1]" and any polynomial f:

£ — frin = O(1/r?)



0, }2 CONVERGENCE RATE
FOR THE SPHERE



Key steps

(1) Reduce to the case when f is linear:
By Taylor, f has a quadratic upper estimator:
f(x) < f(a) + VF(a)"(x — a) +7llx — al]?
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)T(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;

Reduce to the analysis for the interval [—1,1]:
Key fact: Let h(x;) be a degree 2r univariate optimal SoS density

for the univariate problem n[nq ) (with (1 — x7)("=3)/2dx))
x1e[—1,
Then h(x;) (rescaled) gives a (good) SoS density for the
multivariate problem: min x; (with 1« Haar measure)
xeSn—1

This is based on the integration trick:

1
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1
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)T(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;

Reduce to the analysis for the interval [—1,1]:
Key fact: Let h(x;) be a degree 2r univariate optimal SoS density

for the univariate problem n[nq ) (with (1 — x7)("=3)/2dx))
x1e[—1,
Then h(x;) (rescaled) gives a (good) SoS density for the
multivariate problem: min x; (with 1« Haar measure)
xeSn—1

This is based on the integration trick:

1
1= / h(x)(1 — Xf)%sdxl =C h(x)dp
1 sn—1

1

1 n—3
-1+ O<ﬁ) = / xth(x))(1 —x?) 2 dxg = C x1h(xy)du
—1 Sn—1

[de Klerk-L'20]



The bound 1/r? is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial f(x) = (—1)9(c"x)9, the analysis is tight:

e -a(5)



The bound 1/r? is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial f(x) = (—1)9(c"x)9, the analysis is tight:

ED(f) = Q(i)

2
This relies on the following link to cubature rules:

Fact (Martinez et al.'19)
Let {(x'),w;) : i € [N]} be a positive cubature rule on K that is

exact for integrating polynomials of degree d + 2r. If f has degree d
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The bound 1/r? is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial f(x) = (—1)9(c"x)9, the analysis is tight:

ED(f) = Q(i)

2
This relies on the following link to cubature rules:

Fact (Martinez et al.'19)
Let {(x\), w;) : i € [N]} be a positive cubature rule on K that is

exact for integrating polynomials of degree d + 2r. If f has degree d

v o
£(r) :/ fhdp = Z wif (x)h(xD) > min £(x Z wih(xDy > £,
K i=1

i€[N]

For K = S"~1, use cubature rule from the roots of Gegenbauer polys.



‘LOCAL SIMILARITY  TRICK
&
APPLICATION TO BOX, BALL,
SIMPLEX, ROUND CONVEX BODY
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Lemma (Slot-L"20)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
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‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L'20)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
(1) K, K are ‘locally similar’ at a:
KN B.(a) = Kn B.(a) for some e > 0.
(2) w,w are ‘locally similar’ at a:
m-w(x) <w(x) on int(K)N Bc(a) for somee, m>0.
(3) w(x) < w(x) for all x € int(K).
Then, f has an upper estimator g on R exact at a, satisfying

EC,(F) < EY) ().

Note: (1),(2) clearly hold if a € int(K)
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Transport known O(1/r?) rate for K = [—1, 1]

(1) to K = [~1,1], with w(x) = (1 — x®)*, A > —1/2, any f
[using Chebyshev weight w(x) = (1 — x?)~/?]

(2) to any K, with w = 1, when minimizer a lies in the interior of K

[using K € K = [~1,1]" with w = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K= [0,1]" with w = 1]

(4) to K ball, with w(x) = (1 — [[x[|»)*, A >0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w =1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K with w = 1]



SOS APPROXIMATIONS OF
DIRAC MEASURES
&
APPLICATION TO GENERAL
CONVEX BODIES



Cheaper bounds using the ‘push-forward measure’

e/, measure supported by K (e.g., Lebesgue measure)
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/ e(t)dur(t) = / o(f(x))du(x) for any function ¢ : R = R
F(K) K
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e/, measure supported by K (e.g., Lebesgue measure)

~ ¢ push-forward of 1 by f, supported by F(K) = [fmin, fmax] C R:

/ o(t)dpe(t) = / o(f(x))du(x) for any function ¢ : R = R
F(K) K

e This motivates defining the weaker ‘univariate’ bounds:

7(f) = min [, £(x)s(f(x))dpu(x) st. [ s(f(x))du(x) =1, deg(s) < 2r
s unlvarlate sum-of-squares

= min ff(K) t-s(t)dus(t) s.t. ff t)dus(t) =1, deg(s) <2r
s unlvarlate sum-of-squares
Theorem: The bounds 7,(f) converge to fmin [Lasserre 2019]

Can show convergence rate O(("’%—J)Z) [L-Slot 2020]



Cheaper bounds using the ‘push-forward measure’

e/, measure supported by K (e.g., Lebesgue measure)

~ ¢ push-forward of 1 by f, supported by F(K) = [fmin, fmax] C R:

/ o(t)dpe(t) = / o(f(x))du(x) for any function ¢ : R = R
F(K) K

e This motivates defining the weaker ‘univariate’ bounds:

7(f) = min [, £(x)s(f(x))dpu(x) st. [ s(f(x))du(x) =1, deg(s) < 2r
s unlvarlate sum-of-squares

= min ff(K) t-s(t)dus(t) s.t. ff t)dus(t) =1, deg(s) <2r
s unlvarlate sum-of-squares

7,(f) = smallest root of orthogonal polynomial p,.1 w.r.t. measure s,
but these are not known in general! ~~ needs another approach
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e May assume f(K) =1[0,1] (up to affine transformation)

e Use the (half-)needle polynomials s”(t) of [Kroé-Swetits 1992]
(h >0, r €N, defined as squares of Chebyshev polynomials)
with degree 4r and satisfying

=1 att=0
sh(t)¢ <1 at t €[0,1]
<4e 2V ot teh1]

Theorem (L-Slot 2020)

Assume K is a convex body. Then

2

()~ fn = 0( L2

Key: Can analyze the error when using the needle polynomials s

(with h = (log r)?/r?) as univariate SoS density

Open question: Can one get rid of the factor (log r)??
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Concluding remarks
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If ¢(r) is convergence rate for polynomial minimization on K, then

A(r):= min  max
heX, i=0,1,....m

[De Klerk,Postek,Kuhn'19]



THANK YOU!



