Convergence analysis of approximation hierarchies for polynomial optimization

Monique Laurent

CWI

Joint works with Etienne de Klerk and Lucas Slot
Seminaire Français d'Optimisation, 10 June 2020

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\text {min }}=\min _{x \in K} f(x)
$$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\min }=\min _{x \in K} f(x)
$$

NP-hard problem: it captures, for instance, computing $\alpha(G)$ (the maximum cardinality of a stable set in graph G) when K is a hypercube or a simplex and $\operatorname{deg}(f)=2$, or K is a sphere and $\operatorname{deg}(f)=3$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\min }=\min _{x \in K} f(x)
$$

$\alpha(G)=\max _{x \in[0,1]^{n}} \sum_{i=1}^{n} x_{i}-\sum_{i j \in E} x_{i} x_{j} \quad \frac{1}{\alpha(G)}=\min _{x \in \Delta_{n}} \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i j \in E} x_{i} x_{j}$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\text {min }}=\min _{x \in K} f(x)
$$

$$
\begin{gathered}
\alpha(G)=\max _{x \in[0,1]^{n}} \sum_{i=1}^{n} x_{i}-\sum_{i j \in E} x_{i} x_{j} \quad \frac{1}{\alpha(G)}=\min _{x \in \Delta_{n}} \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i j \in E} x_{i} x_{j} \\
\frac{2 \sqrt{2}}{3 \sqrt{3}} \sqrt{1-\frac{1}{\alpha(G)}}=\max _{(x, y) \in \mathbb{S}^{n+|E|-1}} 2 \sum_{i j \in \bar{E}} x_{i} x_{j} y_{i j}
\end{gathered}
$$

[Motzkin-Straus'65, Nesterov'03]

This lecture: hierarchies of bounds for polynomial optimization:

$$
f_{\min }=\min _{x \in K} f(x)
$$

- Quick recap on the (usual) sums-of-squares based lower bounds
- Main focus on the measure-based upper bounds, in particular on the analysis of their convergence rate

Lasserre/Parrilo SUMS-OF-SQUARES BASED LOWER BOUNDS

'Sums-of-squares' (SoS) lower bounds
(P) $f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

'Sums-of-squares' (SoS) lower bounds

$$
\text { (P) } f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda \text { s.t. } f(x)-\lambda \geq 0 \text { on } K
$$

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$
One can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sums of squares of polynomials"
\rightsquigarrow Get the bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r} \text {, sj SoS }
$$

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$
One can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sums of squares of polynomials"
\rightsquigarrow Get the bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r} \text {, sj SoS }
$$

- $f_{(r)} \leq f_{(r+1)} \leq f_{\text {min }}$

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$
One can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sums of squares of polynomials" \rightsquigarrow Get the bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r}, s_{j} \text { SoS }
$$

- $f_{(r)} \leq f_{(r+1)} \leq f_{\text {min }}$
- Asymptotic convergence: $f_{(r)} \nearrow f_{\text {min }}$ as $r \rightarrow \infty$
[Lasserre 2001]

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$
One can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sums of squares of polynomials" \rightsquigarrow Get the bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r}, s_{j} \text { SoS }
$$

- $f_{(r)} \leq f_{(r+1)} \leq f_{\text {min }}$
- Asymptotic convergence: $f_{(r)} \nearrow f_{\text {min }}$ as $r \rightarrow \infty \quad$ [Lasserre 2001]
[Putinar 1993]: $p>0$ on K compact $\left({ }^{*}\right) \Longrightarrow p$ has such SoS dec.

‘Sums-of-squares’ (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ with $g_{j} \in \mathbb{R}[x]$
One can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sums of squares of polynomials"
\rightsquigarrow Get the bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r}, s_{j} \text { SoS }
$$

- $f_{(r)} \leq f_{(r+1)} \leq f_{\text {min }}$
- Asymptotic convergence: $f_{(r)} \nearrow f_{\text {min }}$ as $r \rightarrow \infty \quad$ [Lasserre 2001]
- Compute $f_{(r)}$ efficiently for fixed r, with semidefinite programming

Testing sums of squares of polynomials with SDP

$$
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \quad \text { is a sum of squares of polynomials }
$$

Testing sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \quad \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2}
\end{gathered}
$$

Testing sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2}=\sum_{i}\left(\bar{p}_{i}^{\top}\left(x^{\alpha}\right)_{|\alpha| \leq d}\right)^{2}
\end{gathered}
$$

Testing sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2}=\sum_{i}\left(\bar{p}_{i}^{\top}\left(x^{\alpha}\right)_{|\alpha| \leq d}\right)^{2} \\
\hat{\mathbb{1}} \\
f(x)=\sum_{i}\left(x^{\alpha}\right)^{\top} \overline{p_{i}} \bar{p}_{i}^{\top}\left(x^{\alpha}\right)
\end{gathered}
$$

Testing sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2}=\sum_{i}\left(\bar{p}_{i}^{\top}\left(x^{\alpha}\right)_{|\alpha| \leq d}\right)^{2} \\
\mathbb{\imath} \\
f(x)=\sum_{i}\left(x^{\alpha}\right)^{\top} \overline{p_{i}} \bar{p}_{i}^{\top}\left(x^{\alpha}\right)=\left(x^{\alpha}\right)^{\top}(\underbrace{\sum_{i} \overline{p_{i}} \overline{p_{i}}}_{M \succeq 0})\left(x^{\alpha}\right)
\end{gathered}
$$

Testing sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \quad \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2}=\sum_{i}\left({\overline{p_{i}}}^{T}\left(x^{\alpha}\right)_{|\alpha| \leq d}\right)^{2} \\
\hat{\mathbb{V}} \\
f(x)=\sum_{i}\left(x^{\alpha}\right)^{T} \overline{p_{i}}{\overline{p_{i}}}^{T}\left(x^{\alpha}\right)=\left(x^{\alpha}\right)^{T}(\underbrace{\sum_{i} \overline{p_{i}}{\overline{p_{i}}}^{\top}}_{M \succeq 0})\left(x^{\alpha}\right) \\
\hat{\mathbb{V}}
\end{gathered}
$$

The SDP: $\left\{\begin{aligned} \sum_{\beta, \gamma \mid \beta+\gamma=\alpha} M_{\beta, \gamma} & =f_{\alpha} \quad(|\alpha| \leq 2 d) \\ M & \succeq 0\end{aligned} \quad\right.$ is feasible

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:
$x^{4}: a=1$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
x^{4}: a=1 \quad x^{3} y: 2 b=2
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{llll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{llll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
\begin{gathered}
x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2 \\
M=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0
\end{gathered}
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
\begin{gathered}
x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2 \\
M=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0 \Longleftrightarrow-1 \leq c \leq 1
\end{gathered}
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$$
\begin{gathered}
x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2 \\
M=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0 \quad \Longleftrightarrow-1 \leq c \leq 1 \\
c=-1 \quad \rightsquigarrow \quad f=\left(x^{2}+x y-y^{2}\right)^{2}+\left(y^{2}+2 x y\right)^{2}
\end{gathered}
$$

Example

Is the polynomial $f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ a SoS?

$$
f(x, y)=\left(\begin{array}{llll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{M \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2$

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0 \Longleftrightarrow-1 \leq c \leq 1 \\
c=-1 \quad \rightsquigarrow \quad f=\left(x^{2}+x y-y^{2}\right)^{2}+\left(y^{2}+2 x y\right)^{2} \\
c=0 \rightsquigarrow f=\left(x^{2}+x y\right)^{2}+\frac{3}{2}\left(x y+y^{2}\right)^{2}+\frac{1}{2}\left(x y-y^{2}\right)^{2}
\end{gathered}
$$

Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)
Under the conditions of Putinar's theorem: K compact (+ Archimedean), there exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{c}{c}}} \quad \text { for all } r \geq c e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)
Under the conditions of Putinar's theorem: K compact (+ Archimedean), there exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{c}{c}}} \quad \text { for all } r \geq c e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

Any better convergence analysis?

Convergence analysis in terms of relaxation order r

Theorem (Nie-Schweighofer 2007)
Under the conditions of Putinar's theorem: K compact (+ Archimedean), there exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text { for all } r \geq c e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

Any better convergence analysis?
Yes for the unit sphere
Theorem (Fang-Fawzi 2019)
Let $K=\mathbb{S}^{n-1}$ the unit sphere, f homogeneous polynomial of degree $2 d$. There exists a constant C_{d} such that

$$
f_{\min }-f_{(r)} \leq\left(f_{\max }-f_{\min }\right) \frac{C_{d}^{2} n^{2}}{r^{2}} \quad \text { for } r \geq C_{d} n
$$

This improves the earlier $O(1 / r)$ result of [Doherty-Wehner 2012]

LASSERRE MEASURE-BASED UPPER BOUNDS

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)
For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\min }=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\text {min }}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(h) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\text {min }}$:

$$
f^{(r)}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h(x) d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\text {min }}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(h) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\text {min }}$:

$$
f^{(r)}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h(x) d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where
μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\min }=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(h) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\text {min }}$:

$$
f^{(r)}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h(x) d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP
- but one needs to know the moments of $\mu: m_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where
μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\text {min }}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(h) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\text {min }}$:

$$
f^{(r)}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP
- but one needs to know the moments of μ : $m_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$ to compute $\int_{K} f(x) d \mu=\int_{K}\left(\sum_{\alpha} f_{\alpha} x^{\alpha}\right) d \mu=\sum_{\alpha} f_{\alpha} m_{\alpha}$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where
μ is a fixed measure with support K and h is a sum-of-squares density:

$$
f_{\text {min }}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(h) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\text {min }}$:

$$
f^{(r)}=\inf \int_{K} f(x) h(x) d \mu \text { s.t. } h \text { SoS, } \int_{K} h(x) d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP
- but one needs to know the moments of μ : $m_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$
- m_{α} known if μ Lebesgue on cube, ball, simplex; Haar on sphere,...

Example: Motzkin polynomial on $K=[-2,2]^{2}$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2}+1
$$

Four global minimizers: $(-1,-1),(-1,1),(1,-1),(1,1)$

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density h of degree 12

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 16

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 20

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 24

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\text {min }}
$$

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\min }
$$

compact K	$E^{(r)}(f)$	μ	
Hypercube	$\Theta\left(1 / r^{2}\right)$	$\left(1-x^{2}\right)^{\lambda}, \lambda>-1$	de Klerk-L'19
f linear	$O\left(1 / r^{2}\right)$	Chebyshev: $\lambda=-1 / 2$	de Klerk-L'19
any f			

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\min }
$$

compact K	$E^{(r)}(f)$	μ	
Hypercube	$\Theta\left(1 / r^{2}\right)$	$\left(1-x^{2}\right)^{\lambda}, \lambda>-1$	de Klerk-L'19
f linear	$O\left(1 / r^{2}\right)$	Chebyshev: $\lambda=-1 / 2$	de Klerk-L'19
any f	$O\left(1 / r^{2}\right)$	$\lambda \geq-1 / 2$	Slot-L'20
any f			

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\min }
$$

compact K	$E^{(r)}(f)$	μ			
Hypercube f linear any f any f	$\begin{aligned} & \Theta\left(1 / r^{2}\right) \\ & O\left(1 / r^{2}\right) \\ & O\left(1 / r^{2}\right) \end{aligned}$	$\begin{gathered} \left(1-x^{2}\right)^{\lambda}, \lambda>-1 \\ \text { Chebyshev: } \lambda=-1 / 2 \\ \lambda \geq-1 / 2 \end{gathered}$	de Klerk-L'19 de Klerk-L'19 Slot-L'20		
Sphere f homogeneous any f	$\begin{aligned} & O(1 / r) \\ & O\left(1 / r^{2}\right) \end{aligned}$	Haar Haar	Doherty-Wehner'12 de Klerk-L'20		
Ball any f	$O\left(1 / r^{2}\right)$	$\left(1-\\|x\\|^{2}\right)^{\lambda}, \lambda \geq 0$	Slot-L'20		
Simplex, 'round' convex body	$O\left(1 / r^{2}\right)$	Lebesgue	Slot-L'20		

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\min }
$$

compact K	$E^{(r)}(f)$	μ			
Hypercube f linear any f any f	$\Theta\left(1 / r^{2}\right)$	$\left(1-x^{2}\right)^{\lambda}, \lambda>-1$	de Klerk-L'19		
Sphere	$O\left(1 / r^{2}\right)$	Chebyshev: $\lambda=-1 / 2$ $\lambda \geq-1 / 2$	de Klerk-L'19 Slot-L'20		
homogeneous any f	Haar				
Ball any f	$O(1 / r)$	Haar	Doherty-Wehner'12 de Klerk-L'20		
Simplex, 'round'					
convex body	$O\left(1 / r^{2}\right)$	$\left(1-\\|x\\|^{2}\right)^{\lambda}, \lambda \geq 0$	Slot-L'20		
Convex body	$O\left((\log r)^{2} / r^{2}\right)$	Lebesgue	Slot-L'20		

Key proof strategies

(1) Reformulate $f^{(r)}$ as an eigenvalue problem and relate $f^{(r)}$ to roots of orthogonal polynomials
$\rightsquigarrow O\left(1 / r^{2}\right)$ rate for the Chebyshev measure on $[-1,1]$
and other measures (with Jacobi weight) for linear polynomials

Key proof strategies

(1) Reformulate $f^{(r)}$ as an eigenvalue problem and relate $f^{(r)}$ to roots of orthogonal polynomials
$\rightsquigarrow O\left(1 / r^{2}\right)$ rate for the Chebyshev measure on $[-1,1]$ and other measures (with Jacobi weight) for linear polynomials
() Use tricks (Taylor approx., integration, 'local similarity') to transport the $O\left(1 / r^{2}\right)$ rate for $[-1,1]$ to more sets (and measures): hypercube, simplex, ball, sphere, 'round' convex bodies

Key proof strategies

(1) Reformulate $f^{(r)}$ as an eigenvalue problem and relate $f^{(r)}$ to roots of orthogonal polynomials
$\rightsquigarrow O\left(1 / r^{2}\right)$ rate for the Chebyshev measure on $[-1,1]$ and other measures (with Jacobi weight) for linear polynomials
() Use tricks (Taylor approx., integration, 'local similarity') to transport the $O\left(1 / r^{2}\right)$ rate for $[-1,1]$ to more sets (and measures): hypercube, simplex, ball, sphere, 'round' convex bodies
(2) Design 'nice' SoS polynomial densities
'that look like the Dirac delta at a global minimizer', (combined with using push-up measures) to get the $O\left((\log r)^{2} / r^{2}\right)$ rate for general K by reducing to the univariate case of $[0,1]$

First Basic trick:
REDUCTION TO THE ANALYSIS OF QUADRATIC AND SEPARABLE POLYNOMIALS

Analyze simpler upper estimators

Lemma

Let $a \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(a)+\langle\nabla f(a), x-a\rangle+\gamma\|x-a\|^{2}:=g(x),
$$

where $f(a)=g(a) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.

Analyze simpler upper estimators

Lemma

Let $a \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(a)+\langle\nabla f(a), x-a\rangle+\gamma\|x-a\|^{2}:=g(x),
$$

where $f(a)=g(a) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.
Hence, for all $r \in \mathbb{N}$,

$$
E^{(r)}(f) \leq E^{(r)}(g) .
$$

Analyze simpler upper estimators

Lemma

Let $a \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(a)+\langle\nabla f(a), x-a\rangle+\gamma\|x-a\|^{2}:=g(x),
$$

where $f(a)=g(a) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.
Hence, for all $r \in \mathbb{N}$,

$$
E^{(r)}(f) \leq E^{(r)}(g)
$$

\rightsquigarrow It suffices to analyze quadratic polynomials and sometimes we may even obtain linear upper estimators!
(e.g. for the sphere)

Eigenvalue reformulation \&

APPLICATION TO THE

univariate case: $K=[-1,1]$
μ given measure with support K

$$
f^{(r)}=\min \int_{K} f h d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f h d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ and set

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r}
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f h d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ and set

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r}
$$

Note: $\quad h \mathrm{SoS} \Longleftrightarrow h=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $X \succeq 0$
μ given measure with support K
$f^{(r)}=\min \int_{K} f h d \mu$ s.t. $h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ and set

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r}
$$

Note: $\quad h$ SoS $\Longleftrightarrow h=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $X \succeq 0$

$$
\rightsquigarrow \quad \int_{K} f h d \mu=\left\langle M_{r}(f), X\right\rangle, \quad \int_{K} h d \mu=\operatorname{Tr}(X)
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f h d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ and set

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r}
$$

Note: $\quad h$ SoS $\Longleftrightarrow h=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $X \succeq 0$

$$
\rightsquigarrow \quad \int_{K} f h d \mu=\left\langle M_{r}(f), X\right\rangle, \quad \int_{K} h d \mu=\operatorname{Tr}(X)
$$

$$
f^{(r)}=\min \left\{\left\langle M_{r}(f), X\right\rangle \text { s.t. } \operatorname{Tr}(X)=1, X \succeq 0\right\}=\lambda_{\min }\left(M_{r}(f)\right)
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f h d \mu \text { s.t. } h \operatorname{SoS}, \int_{K} h d \mu=1, \operatorname{deg}(h) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ and set

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r}
$$

Note: $\quad h$ SoS $\Longleftrightarrow h=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $X \succeq 0$

$$
\rightsquigarrow \quad \int_{K} f h d \mu=\left\langle M_{r}(f), X\right\rangle, \quad \int_{K} h d \mu=\operatorname{Tr}(X)
$$

$$
f^{(r)}=\min \left\{\left\langle M_{r}(f), X\right\rangle \text { s.t. } \operatorname{Tr}(X)=1, X \succeq 0\right\}=\lambda_{\min }\left(M_{r}(f)\right)
$$

For $K=[-1,1]$, can analyze $f^{(r)}$ for Chebyshev measure $d \mu=\left(1-x^{2}\right)^{-1 / 2} d x$ and any Jacobi measure $d \mu=\left(1-x^{2}\right)^{\lambda} d x \quad(\lambda>-1)$ when f is linear

Recall it is enough to deal with f quadratic: $f(x)=x, f(x)=x^{2}+k x$

$$
K=[-1,1], \text { linear case: } f(x)=x
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials)
Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials)
Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

$$
M_{r}(x)=\left(\begin{array}{cccccc}
b_{0} & a_{0} & & & & \\
a_{0} & b_{1} & a_{1} & & & \\
& a_{1} & b_{2} & a_{2} & & \\
& & a_{2} & b_{3} & a_{3} & \\
\\
& & & \ddots & \ddots & \ddots \\
& & & & a_{r-2} & b_{r-1}
\end{array} a_{r-1} .\right.
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials)
Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L'19)
For the Jacobi measure $d \mu=\left(1-x^{2}\right)^{\lambda} d x$ with $\lambda>-1$, and $f(x)=x$:
$f^{(r)}=\lambda_{\min }\left(M_{r}(x)\right)=$ smallest root of $p_{r+1}=-1+\Theta\left(1 / r^{2}\right)=f_{\min }+\Theta\left(1 / r^{2}\right)$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$
NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$
NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$
(2) Minimizer in interior: Then, $f^{(r)}=\lambda_{\text {min }}\left(M_{r}(f)\right)$ where

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$ NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$
(2) Minimizer in interior: Then, $f^{(r)}=\lambda_{\text {min }}\left(M_{r}(f)\right)$ where
$M_{r}(f)=\left(\int_{-1}^{1}\left(x^{2}+k x\right) p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is 5 -diagonal 'almost' Toeplitz:

$$
a=\frac{1}{2}, b=\frac{k}{2}, c=\frac{1}{4}
$$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)=-\frac{k^{2}}{4}+O\left(1 / r^{2}\right)=f_{\text {min }}+O\left(1 / r^{2}\right)$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)=-\frac{k^{2}}{4}+O\left(1 / r^{2}\right)=f_{\text {min }}+O\left(1 / r^{2}\right)$

Theorem (de Klerk-L'19)
For the Chebyshev measure on $[-1,1]^{n}$ and any polynomial f :

$$
f^{(r)}-f_{\min }=O\left(1 / r^{2}\right)
$$

$O\left(\frac{1}{r^{2}}\right)$ CONVERGENCE RATE FOR THE SPHERE

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a quadratic upper estimator:

$$
f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\|x-a\|^{2}
$$

Key steps

(1) Reduce to the case when f is linear:

$$
\text { By Taylor, } f \text { has a linear upper estimator: }
$$

$$
f(x) \leq f(a)+\nabla f(a)^{\top}(x-a)+\gamma\left(2-2 x^{\top} a\right)
$$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{\top}(x-a)+\gamma\left(2-2 x^{\top} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\left(2-2 x^{\top} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\left(2-2 x^{\top} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $h\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1} \quad\left(\right.$ with $\left.\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}\right)$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\left(2-2 x^{T} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $h\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1} \quad$ (with $\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}$)
Then $h\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n-1}} x_{1}$
(with μ Haar measure)

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\left(2-2 x^{T} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $h\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1} \quad$ (with $\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}$)
Then $h\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n}-1} x_{1} \quad$ (with μ Haar measure)
This is based on the integration trick:

$$
\begin{aligned}
& \int_{-1}^{1} h\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} h\left(x_{1}\right) d \mu \\
& \quad \int_{-1}^{1} x_{1} h\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} x_{1} h\left(x_{1}\right) d \mu
\end{aligned}
$$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(a)+\nabla f(a)^{T}(x-a)+\gamma\left(2-2 x^{T} a\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $h\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1} \quad$ (with $\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}$)
Then $h\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n-1}} x_{1} \quad$ (with μ Haar measure)
This is based on the integration trick:

$$
\begin{gathered}
1=\int_{-1}^{1} h\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} h\left(x_{1}\right) d \mu \\
-1+O\left(\frac{1}{r^{2}}\right)=\int_{-1}^{1} x_{1} h\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} x_{1} h\left(x_{1}\right) d \mu
\end{gathered}
$$

The bound $1 / r^{2}$ is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial $f(x)=(-1)^{d}\left(c^{\top} x\right)^{d}$, the analysis is tight:

$$
E^{(r)}(f)=\Omega\left(\frac{1}{r^{2}}\right)
$$

The bound $1 / r^{2}$ is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial $f(x)=(-1)^{d}\left(c^{\top} x\right)^{d}$, the analysis is tight:

$$
E^{(r)}(f)=\Omega\left(\frac{1}{r^{2}}\right)
$$

This relies on the following link to cubature rules:

Fact (Martinez et al.'19)
Let $\left\{\left(x^{(i)}, w_{i}\right): i \in[N]\right\}$ be a positive cubature rule on K that is
exact for integrating polynomials of degree $d+2 r$. If f has degree d

$$
f^{(r)}=\int_{K} f h d \mu=\sum_{i=1}^{N} w_{i} f\left(x^{(i)}\right) h\left(x^{(i)}\right) \geq \min _{i \in[N]} f\left(x^{(i)}\right) \overbrace{\sum_{i} w_{i} h\left(x^{(i)}\right)}^{=1} \geq f_{\text {min }}
$$

The bound $1 / r^{2}$ is tight for linear polynomials

Theorem (de Klerk-L'20)
For any linear polynomial $f(x)=(-1)^{d}\left(c^{T} x\right)^{d}$, the analysis is tight:

$$
E^{(r)}(f)=\Omega\left(\frac{1}{r^{2}}\right)
$$

This relies on the following link to cubature rules:

Fact (Martinez et al.'19)
Let $\left\{\left(x^{(i)}, w_{i}\right): i \in[N]\right\}$ be a positive cubature rule on K that is
exact for integrating polynomials of degree $d+2 r$. If f has degree d

$$
f^{(r)}=\int_{K} f h d \mu=\sum_{i=1}^{N} w_{i} f\left(x^{(i)}\right) h\left(x^{(i)}\right) \geq \min _{i \in[N]} f\left(x^{(i)}\right) \overbrace{\sum_{i} w_{i} h\left(x^{(i)}\right)}^{=1} \geq f_{\text {min }}
$$

For $K=\mathbb{S}^{n-1}$, use cubature rule from the roots of Gegenbauer polys.

'Local similarity' Trick

\&

Application to box, ball,

SIMPLEX, ROUND CONVEX BODY

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a :

$$
K \cap B_{\epsilon}(a)=\widehat{K} \cap B_{\epsilon}(a) \quad \text { for some } \epsilon>0 .
$$

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a :

$$
K \cap B_{\epsilon}(a)=\widehat{K} \cap B_{\epsilon}(a) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(a) \quad \text { for some } \epsilon, m>0 .
$$

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a :

$$
K \cap B_{\epsilon}(a)=\widehat{K} \cap B_{\epsilon}(a) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(a) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a :

$$
K \cap B_{\epsilon}(a)=\widehat{K} \cap B_{\epsilon}(a) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(a) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

Then, f has an upper estimator g on \widehat{K}, exact at a, satisfying

$$
E_{K, w}^{(r)}(f) \leq E_{\widehat{K}, \widehat{w}}^{(r)}(g) .
$$

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L'20)

Let $a \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a :

$$
K \cap B_{\epsilon}(a)=\widehat{K} \cap B_{\epsilon}(a) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(a) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

Then, f has an upper estimator g on \widehat{K}, exact at a, satisfying

$$
E_{K, w}^{(r)}(f) \leq E_{\widehat{K}, \widehat{w}}^{(r)}(g) .
$$

Note: (1),(2) clearly hold if $a \in \operatorname{int}(K)$

Transport known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1]$

(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$]

Transport known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1]$

(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$]
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$

Transport known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1]$

(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$]
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$
(3) to K simplex, with $w=1$, when minimizer lies on the boundary [after applying affine mapping and using $\widehat{K}=[0,1]^{n}$ with $\widehat{w}=1$]

Transport known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1]$

(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$]
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$
(3) to K simplex, with $w=1$, when minimizer lies on the boundary [after applying affine mapping and using $\widehat{K}=[0,1]^{n}$ with $\left.\widehat{w}=1\right]$
(4) to K ball, with $w(x)=\left(1-\|x\|^{2}\right)^{\lambda}, \lambda \geq 0$
[using a linear upper estimator and an integration trick, when the minimizer lies on the boundary]

Transport known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1]$

(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$]
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$
(3) to K simplex, with $w=1$, when minimizer lies on the boundary [after applying affine mapping and using $\widehat{K}=[0,1]^{n}$ with $\left.\widehat{w}=1\right]$
(4) to K ball, with $w(x)=\left(1-\|x\|^{2}\right)^{\lambda}, \lambda \geq 0$
[using a linear upper estimator and an integration trick, when the minimizer lies on the boundary]
(5) to K 'round' convex body, with $w=1$ (i.e., K has inscribed and circumscribed tangent balls at any boundary point) [using the result for the ball \widehat{K} with $\widehat{w}=1$]

SoS Approximations of DIRAC MEASURES \&
 APPLICATION TO GENERAL CONVEX BODIES

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\max }\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\max }\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\text {min }}, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } \quad \begin{aligned}
& \int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
& s \text { univariate sum-of-squares }
\end{aligned}
$$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\begin{aligned}
& \tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } \quad \begin{array}{l}
\int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\\
s \text { univariate sum-of-squares }
\end{array} \\
&=\min \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } \quad \begin{array}{l}
\int_{f(K)} s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
\\
s \text { univariate sum-of-squares }
\end{array}
\end{aligned}
$$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\begin{aligned}
& \tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } \quad \begin{array}{l}
\int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\\
s \text { univariate sum-of-squares }
\end{array} \\
&=\min \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } \begin{array}{l}
\int_{f(K)} s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
s \text { univariate sum-of-squares }
\end{array}
\end{aligned}
$$

$$
\text { Hence: } \quad f_{\min } \leq f^{(r d)} \leq \tau_{r}(f) \quad \text { if } d=\operatorname{deg}(f)
$$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\begin{aligned}
\tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) & \text { s.t. } \\
=\min \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } & \begin{array}{l}
\int_{S(K)} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
s \text { univariate sum-of-squares }
\end{array}
\end{aligned}
$$

Theorem: The bounds $\tau_{r}(f)$ converge to $f_{\text {min }}$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\begin{aligned}
\tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) & \text { s.t. } \\
=\min \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } & \begin{array}{l}
\int_{S(K)} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
s \text { univariate sum-of-squares }
\end{array}
\end{aligned}
$$

Theorem: The bounds $\tau_{r}(f)$ converge to $f_{\text {min }}$
[Lasserre 2019]
Can show convergence rate $O\left(\frac{(\log r)^{2}}{r^{2}}\right)$

Cheaper bounds using the 'push-forward measure'

- μ measure supported by K (e.g., Lebesgue measure)
$\rightsquigarrow \mu_{f}$ push-forward of μ by f, supported by $f(K)=\left[f_{\min }, f_{\text {max }}\right] \subseteq \mathbb{R}$:

$$
\int_{f(K)} \varphi(t) d \mu_{f}(t)=\int_{K} \varphi(f(x)) d \mu(x) \quad \text { for any function } \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

- This motivates defining the weaker 'univariate' bounds:

$$
\begin{aligned}
\tau_{r}(f)=\min \int_{K} f(x) s(f(x)) d \mu(x) & \text { s.t. } \quad \int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
& s \text { univariate sum-of-squares }
\end{aligned}
$$

$\tau_{r}(f)=$ smallest root of orthogonal polynomial p_{r+1} w.r.t. measure μ_{f}, but these are not known in general! \rightsquigarrow needs another approach

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

In green, the half-needle polynomial with $h=1 / 5$

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

Theorem (L-Slot 2020)
Assume K is a convex body. Then

$$
\tau_{r}(f)-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

Theorem (L-Slot 2020)
Assume K is a convex body. Then

$$
\tau_{r}(f)-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

Key: Can analyze the error when using the needle polynomials s_{r}^{h} (with $h=(\log r)^{2} / r^{2}$) as univariate SoS density

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

Theorem (L-Slot 2020)
Assume K is a convex body. Then

$$
\tau_{r}(f)-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

Key: Can analyze the error when using the needle polynomials s_{r}^{h} (with $h=(\log r)^{2} / r^{2}$) as univariate SoS density

- May assume $f(K)=[0,1]$ (up to affine transformation)
- Use the (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits 1992] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials) with degree $4 r$ and satisfying

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

Theorem (L-Slot 2020)
Assume K is a convex body. Then

$$
\tau_{r}(f)-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

Key: Can analyze the error when using the needle polynomials s_{r}^{h} (with $h=(\log r)^{2} / r^{2}$) as univariate SoS density

Open question: Can one get rid of the factor $(\log r)^{2}$?

Concluding remarks

- Can compute $f^{(r)}$ as smallest eigenvalue of a matrix with size $O\left(n^{r}\right)$, and the bounds $\tau_{r}(f)$ as smallest eigenvalue of a matrix of size $r+1$
... but computing its entries is more expensive since one needs to integrate powers of f

Concluding remarks

- Can compute $f^{(r)}$ as smallest eigenvalue of a matrix with size $O\left(n^{r}\right)$, and the bounds $\tau_{r}(f)$ as smallest eigenvalue of a matrix of size $r+1$
... but computing its entries is more expensive since one needs to integrate powers of f
- The error analysis for $f^{(r)}$ extends to rational functions f [dK-L'19]

Concluding remarks

- Can compute $f^{(r)}$ as smallest eigenvalue of a matrix with size $O\left(n^{r}\right)$, and the bounds $\tau_{r}(f)$ as smallest eigenvalue of a matrix of size $r+1$
... but computing its entries is more expensive since one needs to integrate powers of f
- The error analysis for $f^{(r)}$ extends to rational functions f [dK-L'19]
- Application to the general problem of moments:

$$
b_{0}:=\inf _{\mu} \int_{K} f_{0} d \mu \text { s.t. } \int_{K} f_{i} d \mu=b_{i}(i \in[m])
$$

Concluding remarks

- Can compute $f^{(r)}$ as smallest eigenvalue of a matrix with size $O\left(n^{r}\right)$, and the bounds $\tau_{r}(f)$ as smallest eigenvalue of a matrix of size $r+1$
... but computing its entries is more expensive since one needs to integrate powers of f
- The error analysis for $f^{(r)}$ extends to rational functions f [dK-L'19]
- Application to the general problem of moments:

$$
\begin{array}{r}
b_{0}:=\inf _{\mu} \int_{K} f_{0} d \mu \text { s.t. } \int_{K} f_{i} d \mu=b_{i}(i \in[m]) \\
\Delta(r):=\min _{h \in \Sigma_{2 r}} \max _{i=0,1, \ldots, m}\left|\int_{K} f_{i} h d \mu-b_{i}\right|
\end{array}
$$

Concluding remarks

- Can compute $f^{(r)}$ as smallest eigenvalue of a matrix with size $O\left(n^{r}\right)$, and the bounds $\tau_{r}(f)$ as smallest eigenvalue of a matrix of size $r+1$
... but computing its entries is more expensive since one needs to integrate powers of f
- The error analysis for $f^{(r)}$ extends to rational functions f [dK-L'19]
- Application to the general problem of moments:

$$
\begin{array}{r}
b_{0}:=\inf _{\mu} \int_{K} f_{0} d \mu \text { s.t. } \int_{K} f_{i} d \mu=b_{i}(i \in[m]) \\
\Delta(r):=\min _{h \in \Sigma_{2 r}} \max _{i=0,1, \ldots, m}\left|\int_{K} f_{i} h d \mu-b_{i}\right|
\end{array}
$$

If $\epsilon(r)$ is convergence rate for polynomial minimization on K, then

$$
\Delta(r)=O(\sqrt{\epsilon(r)})
$$

[De Klerk,Postek,Kuhn'19]

Thank you!

