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Introduction

You are planning your commute route for tomorrow.

Not sure about your exact departure time, nor who might be on the road.

A congestion game with a random set of players !
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Introduction

Congestion games model strategic interactions under crowding externalities.

Games with “many small players”
are frequently modeled as nonatomic
games with a continuum of players.

In which sense is a continuous model
close to the discrete system ?

The answer depends on what we mean by “small players”...

player i has a small load wi ≈ 0 to be transported with certainty
player i has a unit load but is present with small probability pi ≈ 0

Each interpretation yields a different continuous limit.
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Introduction

Network Congestion Games — G

We are given a graph (V,E) with
a set of edges e ∈ E with continuous non-decreasing costs ce : R+ → R+

a set of OD pairs t ∈ T with corresponding routes r ∈ Rt ⊆ 2E

a set of demands dt ≥ 0 for each t ∈ T

O1

O2

D

x

x 2

1 1

Demands can be...
non-atomic: continuous, infinitesimal players → urban traffic

atomic


splittable: continuous, few players → fluids, sand, telecom
unsplittable: discrete, few players → vessels, airplanes
random: unpredictable → packets or vehicles on a network
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Introduction Nonatomic games and Wardrop equilibria

Non-Atomic Congestion Games — G na

Continuum of players / each one has a negligible impact on congestion.
Perfectly divisible / aggregate demands dt ≥ 0 for each OD pair t ∈ T.

Let F be the set of splittings (y, x) of the demands dt into route-flows yr ≥ 0,
together with their induced edge-loads xe :

dt =
∑

r∈Rt
yr (∀t ∈ T),

xe =
∑

r∋e yr (∀e ∈ E).

A Wardrop equilibrium is a pair (ŷ, x̂) ∈ F that uses only shortest routes:

(∀t ∈T)(∀r, r ′∈Rt) ŷr > 0 ⇒
∑
e∈r

ce(x̂e) ≤
∑
e∈r ′

ce(x̂e).
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Introduction Nonatomic games and Wardrop equilibria

Example: Single OD with 2 identical parallel links.

d ⇒ O D

c(x)

c(x)

At equilibrium the demand splits 50%-50% : ( d
2 ,

d
2 ).

Variational characterization:

Theorem (Beckmann-McGuire-Winsten, 1955)
Wardrop equilibria are exactly the optimal solutions of the convex program

min
(y,x)∈F

∑
e∈E

∫ xe

0
ce(z) dz.
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Introduction Nonatomic games and Wardrop equilibria

Atomic Splittable Congestion Games — G s

Atomic splittable congestion games are similar in that demands are continuous
and can be split over different routes, except that now:

1 There are finitely many players, each one controls a fraction of the demand.
2 Each player has a non-negligible impact on congestion and exploits her

market power by strategically splitting the demand over the available routes.

Theorem (Haurie & Marcotte, 1985)
When the number of players increases and the demand controlled by each of them
tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

In what follows we address the discrete cases: unsplittable and random demands.
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Introduction Weighted atomic games −→ Wardop equilibrium

Weighted Congestion Games — G (w)

A weighted congestion game has a finite set of players i ∈ N with OD pairs ti ∈ T,
and unsplittable weights wi > 0 that must be routed over a single path ri ∈ Rti

chosen at random using a mixed strategy πi ∈ ∆(Rti).

Yr =
∑

i∈N wi 1{ri=r} are the random route-flows
Xe =

∑
i∈N wi 1{e∈ri} are the corresponding edge-loads

A mixed strategy profile π = (πi)i∈N is a Nash equilibrium iff for each player i ∈ N
and routes r, r ′ ∈ Rti with πi(r) > 0 we have

E
[∑

e∈r ce(Xe)|ri = r
]
≤ E

[∑
e∈r ′ ce(Xe)|ri = r ′ ]
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Introduction Weighted atomic games −→ Wardop equilibrium

WCGs with identical weights wi ≡ w are potential games and admit pure
equilibria (Rosenthal’73). The potential for a profile r = (ri)i∈N is

Φ(r) =
∑
e∈E

ne(r)∑
k=1

ce(k w)w ; ne(r) ≜ |{i ∈ N : e ∈ ri}|.

For heterogeneous weights we only have the existence of mixed equilibria.
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Introduction Weighted atomic games −→ Wardop equilibrium

Example: Routing n players over 2 identical parallel links.

n ⇒ O D

c(x)

c(x)

Symmetric mixed equilibrium: each player randomizes ( 1
2 ,

1
2 ).

If players’ weights are wi ≡ d/n then we have random edge-loads

Xe ∼ d
n Binomial(n, 1

2 )

which converge almost surely to the Wardrop equilibrium ( d
2 ,

d
2 ).

What happens for other non-symmetric equilibria? What if weights are not
homogeneous? And with different costs? And more complex topologies?

(Roberto Cominetti – UAI) Routing Games in Congested Networks 10 / 36
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Introduction Weighted atomic games −→ Wardop equilibrium

Wardrop Convergence for Vanishing Weights

Let πn be a sequence of mixed equilibria for weighted ACGs G (wn) with
a) |Nn| → ∞
b) maxi∈Nn wn

i → 0
c) dn

t ≜
∑

i:tn
i =t wn

i → dt for all t ∈ T

Theorem
1 The expected flows (yn, xn) = (EYn,EXn) are bounded and each cluster point

(ŷ, x̂) is a Wardrop equilibrium with demands dt and costs ce(·).
2 Along any convergent subsequence, the random route-flows and edge-loads

(Yn,Xn) converge in L2 to the (constant) Wardrop equilibrium (ŷ, x̂).
3 If the costs ce(·) are strictly increasing, then x̂ is unique and Xn L2

→ x̂.
4 If ce ∈ C 2 with c′e(·) > 0, then there is a constant κ such that

∥Xn − x̂∥L2 ≤ κ(
√
maxi∈N wn

i +
√

∥dn − d∥1).
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Introduction Weighted atomic games −→ Wardop equilibrium
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Introduction Games with random players −→ Poisson equilibrium

Simple and expected... but reality looks more like this
Copenhagen – Source: DTU Transport (www.transport.dtu.dk)
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Introduction Games with random players −→ Poisson equilibrium

Traffic count data – Dublin 2017-2018
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Data source: Transport Infrastructure Ireland
https://www.tii.ie/roads-tolling/operations-and-maintenance/traffic-count-data/
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Introduction Games with random players −→ Poisson equilibrium

Bernoulli Congestion Games — G (p)

A Bernoulli congestion game has a finite set of players i ∈ N with OD pairs ti ∈ T,
unit weights wi = 1, and a probability of being active

pi = P(Ui = 1).

Each player i ∈ N selects a route ri ∈ Rti using a mixed strategy πi ∈ ∆(Rti).

Yr =
∑

i∈N Ui 1{ri=r} are the random route-flows
Xe =

∑
i∈N Ui 1{e∈ri} are the corresponding edge-loads

A strategy profile π = (πi)i∈N is a Bayes-Nash equilibrium if for each player i ∈ N
and routes r, r ′ ∈ Rti with πi(r) > 0 we have

E
[∑

e∈r ce(Xe)|Ui = 1, ri = r
]
≤ E

[∑
e∈r ′ ce(Xe)|Ui = 1, ri = r ′ ] .

Remark. Costs need only be defined over the integers ce : N → R+.
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Introduction Games with random players −→ Poisson equilibrium

Bernoulli ACGs are Potential Games

Proposition
Every Bernoulli ACG is a potential game with potential

Φ(r) ≜ E

∑
e∈E

Ne(r)∑
k=1

ce(k)

 ; Ne(r) ≜
∑
i:e∈ri

Ui

Corollary
Every Bernoulli ACG has Nash equilibria in pure strategies.
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Introduction Games with random players −→ Poisson equilibrium

Example: Routing n random players over 2 identical parallel links.

n ⇒ O D

c(x)

c(x)

Symmetric mixed equilibrium: each player randomizes ( 1
2 ,

1
2 ).

If each player is present with probability pi = d/n, the random edge-loads are

Xe ∼ Binomial(n, d
2n )

which for large n converges to a Poisson( d
2 ).

What happens for other non-symmetric equilibria? What if players are not
homogeneous? And with different costs? And more complex topologies?

(Roberto Cominetti – UAI) Routing Games in Congested Networks 16 / 36
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Introduction Games with random players −→ Poisson equilibrium

Toolkit — Sums of Bernoullis ≈ Poisson

The total variation distance between two integer-valued random variables U,V is

dtv(U,V) = 1
2

∑
k∈N

∣∣P(U = k)− P(V = k)
∣∣.

Theorem (Barbour & Hall 1984, Borizov & Ruzankin 2002))

Let S = X1 + . . .+ Xn be a sum of independent Bernoullis with P(Xi = 1) ≤ p,
and X ∼ Poisson(x) with the same expectation E[X] = x = E[S]. Then

dTV(S,X) ≤ p.

Moreover, if h : N → R is such that E|∆2h(X)| ≤ ν, then

|Eh(S)− Eh(X)| ≤ x ν
2

p ep

(1 − p)2 .

Remark: ∆2h(x) ≜ h(x+2)− 2h(x+1) + h(x).
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Introduction Games with random players −→ Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Standing Assumption: E[X 2ce(1+X)] < ∞ for all e ∈ E and X ∼ Poisson(x).

This is a mild condition. It holds for costs with polynomial or exponential growth.
It fails for fast growing costs such as factorials k! or bi-exponentials exp(exp(k)).

We introduce the expected cost functions c̃e : R+ → R+ defined by

c̃e(x) ≜ E[ce(1+X)] =
∑∞

k=0 ce(1+k)e−x xk

k! .

(Roberto Cominetti – UAI) Routing Games in Congested Networks 18 / 36
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Introduction Games with random players −→ Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Let πn be a sequence of Bayes-Nash equilibria for Bernoulli ACGs G (pn) with
a) |Nn| → ∞,

b) maxi∈Nn pn
i → 0,

c) dn
t ≜

∑
i:tn

i =t pn
i → dt for all t ∈ T.

Theorem
1 The expected flows (yn, xn) = (EYn,EXn) are bounded and each cluster point

(ỹ, x̃) is a Wardrop equilibrium with demands dt and costs c̃e(·).
2 Along any convergent subsequence we have

the edge-loads Xn
e converge in total variation to Xe ∼ Poisson(x̃e),

the route-flows Yn
r converge in total variation to Yr ∼ Poisson(ỹr),

the Poisson limits Yr are independent.
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Introduction Games with random players −→ Poisson equilibrium

Poisson convergence for vanishing probabilities

Corollary
If the costs ce(k) are non-decreasing and non-constant, then the c̃e(·)’s are strictly
increasing, the edge-loads x̃e are the same in all Wardrop equilibria, and for every
sequence πn of Bayes-Nash equilibria we have

Xn
e

tv−→ Xe ∼ Poisson(x̃e).

Theorem
If ce(2) > ce(1) for all e ∈ E then there is a constant κ such that

dTV(Xn
e ,Xe) ≤ κ(

√
maxi∈N pn

i +
√
∥dn − d∥1).
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
20/36

Introduction Games with random players −→ Poisson equilibrium

Poisson convergence for vanishing probabilities

Corollary
If the costs ce(k) are non-decreasing and non-constant, then the c̃e(·)’s are strictly
increasing, the edge-loads x̃e are the same in all Wardrop equilibria, and for every
sequence πn of Bayes-Nash equilibria we have

Xn
e

tv−→ Xe ∼ Poisson(x̃e).

Theorem
If ce(2) > ce(1) for all e ∈ E then there is a constant κ such that

dTV(Xn
e ,Xe) ≤ κ(

√
maxi∈N pn

i +
√
∥dn − d∥1).

(Roberto Cominetti – UAI) Routing Games in Congested Networks 20 / 36



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
21/36

Introduction Games with random players −→ Poisson equilibrium

Summary and Comments

1 Both wn
i → 0 and pn

i → 0 lead to different non-atomic limit games:
For vanishing weights, the random edge-loads Xn

e converge in L2 to
the constants edge-loads x̂e.
For vanishing probabilities, Xn

e remain random in the limit and converge
in total variation to Xe ∼ Poisson(x̃e).

2 The Poisson limit is consistent with empirical data on traffic counts.
Also pn

i → 0 is quite natural... congestion depends on players that are
present on a small window around your departure time.

3 The Poisson limit is a special case of Myerson’s Poisson games: the
normalized loads σ(r|t) = yr/dt for r ∈ Rt yield an equilibrium in the
Poisson game (Int J Game Theory 1998).

4 Poisson games were defined without reference to a limit process, so our
convergence result as well as the connection with Wardrop seem new.
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Price-of-Anarchy in Atomic Congestion Games

1 Introduction
Nonatomic games and Wardrop equilibria
Weighted atomic games −→ Wardop equilibrium
Games with random players −→ Poisson equilibrium

2 Price-of-Anarchy in Atomic Congestion Games
Convergence of PoA along sequences of ACGs
PoA for Bernoulli ACGs
PoA for ACGs with affine costs
Price-of-Stability
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Price-of-Anarchy in Atomic Congestion Games Convergence of PoA along sequences of ACGs

Convergence of PoA along sequences of ACGs

For an atomic congestion game G we denote

C(π) = Eπ

[∑
e∈E Xe ce(Xe)

]
(expected social cost)

Copt(G ) = minπ C(π) (minimum social cost)

PoA(G ) = maxπ∈E (G ) C(π)/Copt(G ) (price-of-anarchy)

Theorem
Under the same conditions of the convergence theorems for weighted and
Bernoulli ACGs, we have

PoA(G (wn)) −→ PoA(Wardrop)

PoA(G (pn)) −→ PoA(Poisson)
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Convergence of PoA along sequences of ACGs
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PoA for Bernoulli ACGs — Homogeneous players

How does PoA behaves as a function of the probabilities pi ?

Theorem
Let G p denote the set of Bernoulli ACGs with pi ≤ p for all players. The largest
values of PoA(G (p)) occur for homogeneous players with pi ≡ p.

From now on we focus on the homogeneous case and study PoA and PoS as a
function of p when we move from the deterministic case p = 1 to the limit p ↓ 0.

PoA(p) = sup
G p

max
π∈E (G p)

C(π)/Copt(G p) (Price-of-Anarchy)

PoS(p) = sup
G p

min
π∈E (G p)

C(π)/Copt(G p) (Price-of-Stability)
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Related Literature

Related models
- Non-atomic with stochastic demand

(Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
- Smoothness with incomplete information (Roughgarden, 2015)
- Perception based (Kleer and Schäfer, 2018)

PoA for congestion games with affine costs
- PoA(G ) ≤ 4

3 for non-atomic (Roughgarden and Tardos, 2002)
- PoA(G ) ≤ 5

2 for atomic deterministic (Christodoulou and Koutsoupias, 2005;
Awerbuch, Azar and Epstein, 2005)

As a consequence of the latter we get PoA(p) ≤ 5
2 .

But we can find sharper bounds... and we expect PoA(p) ∼ 4
3 for small p.
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Smoothness Framework

Proposition
A Bernoulli ACG with homogeneous players is equivalent to a deterministic
unweighted ACG for the auxiliary costs

cp
e(k) = E[ce(1 + B)] with B ∼ Binomial(k−1, p)

Lemma (Roughgarden, 2015)
Let G be an unweighted ACG which is (λ, µ)-smooth with λ > 0 and µ ∈ (0, 1),
that is to say

(∀s, s′ ∈ S)
∑

i∈N Ci(s′i , s−i) ≤ λC(s′) + µC(s).

Then we have PoA(G ) ≤ λ
1−µ .
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Smoothness Framework — Affine Costs

Lemma

Let P = {(k,m) ∈ N2 : k ≥ 1} and suppose that λ > 0 and µ ∈ (0, 1) satisfy

k (1+pm) ≤ λ k (1−p+pk) + µm (1−p+pm) ∀(k,m) ∈ P. (1)

Then every stochastic ACG G p with homogeneous players and affine costs is
(λ, µ)-smooth, and therefore PoA(p) ≤ λ

1−µ .

The best combination of λ and µ for fixed p requires to solve

B(p) ≜ min
λ>0,µ∈(0,1)

{
λ

1−µ : subject to (1)
}

which reduces to a 1D problem noting that the smallest λ compatible with (1) is

λ = sup
(k,m)∈P

k(1+pm)−µ m(1−p+pm)
k(1−p+pk)

(Roberto Cominetti – UAI) Routing Games in Congested Networks 27 / 36
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Smoothness Framework — Affine Costs

The previous reduction leads to the equivalent minimization problem

B(p) = inf
µ∈(0,1)

φp(
µ

1−µ ) = inf
y>0

φp(y)

where φp(·) is the convex envelop function

φp(y) = sup
(k,m)∈P

1+pm
1−p+pk + k(1+pm)−m(1−p+pm)

k(1−p+pk) y.

For each p the unique optimum y can be found explicitly, and then we recover the
optimal combination (λ, µ).
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Price-of-Anarchy in Atomic Congestion Games PoA for ACGs with affine costs

Upper Bounds for the Price-of-Anarchy
Theorem
Set p̄0 = 1

4 and p̄1 ∼ 0.3774 the unique real root of 8p3 + 4p2 = 1. Then

⇒ PoA(p) ≤ B(p) =


4/3 if 0 < p ≤ p̄0,

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1,

1 + p + p2

1+p if p̄1 ≤ p ≤ 1,

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Lower Bounds for Large p

d1

d2 d3 ce(x) =


x if e = hi

p x if e = gi

0 if dashed

g1g2

g3

h1h2

h3

o1

o2

o3

⇒ PoA(G p) = 1 + p +
p2

1 + p .
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Lower Bounds for Small p

ō d̄

ē

o1 d1e1

o2 d2e2

o3 d3e3

ok dkek

...

2k players
ce(x) =


1

1+2kp x if e = ē
x if e = ei

0 if dashed

k

⇒ PoA(G p) = PoS(G p) ≥ 4kp+2−2p
3kp+2−p → 4

3 as k → ∞

(Roberto Cominetti – UAI) Routing Games in Congested Networks 31 / 36



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
32/36

Price-of-Anarchy in Atomic Congestion Games PoA for ACGs with affine costs

Lower Bounds for Intermediate p

a1

b1

c1

h1
g1

a2

b2
c2

h2

g2

a3

b3

c3

h3

g3

a4

b4

c4

h4g4

a5

b5

c5

h5

g5

a6

b6

c6

h6

g6

o1

d1

ce(x) =


α x if e = hi

x if e = gi

0 if dashed
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Bounds on the Price-of-Anarchy are Tight

PoA(p) = B(p) =


4
3 if 0 < p ≤ p̄0

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1

1 + p + p2

1+p if p̄1 ≤ p ≤ 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Price-of-Anarchy in Atomic Congestion Games Price-of-Stability

Price-of-Anarchy vs Price-of-Stability
Combining with Kleer and Schäfer (2018), we also get tight bounds for PoS

PoS(p) =
{

4/3 if 0 < p ≤ p̄0
1 +

√
p/(2 + p) if p ≥ p̄0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

p0

p1

PoA(p)

PoS(p)
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Price-of-Anarchy in Atomic Congestion Games

Conclusion

1 Convergence of ACGs towards non-atomic games:
vanishing weights −→ Wardrop
vanishing probabilities −→ Poisson/Wardrop

2 Convergence of PoA/PoS, plus sharp bounds for affine costs
3 Some open questions

- Mixed limits: weights & probabilities
- Tight bounds for polynomial costs
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Thanks !
Questions ?
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