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Introduction

You are planning your commute route for tomorrow.

Not sure about your exact departure time, nor who might be on the road.

A congestion game with a random set of players !
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Introduction

Congestion games model strategic interactions under crowding externalities.

Games with  “many small players”
are frequently modeled as nonatomic
games with a continuum of players.

In which sense is a continuous model
close to the discrete system ?
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Introduction

Congestion games model strategic interactions under crowding externalities.

Games with  “many small players”
are frequently modeled as nonatomic
games with a continuum of players.

In which sense is a continuous model
close to the discrete system ?

The answer depends on what we mean by “small players”...

@ player j has a small load w; = 0 to be transported with certainty

@ player j has a unit load but is present with small probability p; ~ 0

Each interpretation yields a different continuous limit.
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Introduction

Network Congestion Games — ¢

We are given a graph (V, E) with
@ a set of edges e € E with continuous non-decreasing costs c. : Ry — R,

@ aset of OD pairs t € T with corresponding routes r € %, C 2F
@ a set of demands d; > 0 foreach t€ T
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Introduction

Network Congestion Games — ¢

We are given a graph (V, E) with
@ a set of edges e € E with continuous non-decreasing costs c. : Ry — R,

@ aset of OD pairs t € T with corresponding routes r € %, C 2F
@ a set of demands d; > 0 foreach t€ T

Demands can be...
@ non-atomic: continuous, infinitesimal players — urban traffic

splittable: continuous, few players — fluids, sand, telecom
unsplittable: discrete, few players — vessels, airplanes
random: unpredictable — packets or vehicles on a network

@ atomic
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[QICEIEELIN  Nonatomic games and Wardrop equilibria

Non-Atomic Congestion Games — ¥

@ Continuum of players / each one has a negligible impact on congestion.

o Perfectly divisible / aggregate demands d; > 0 for each OD pair t € T.
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RN Nonatomic games and Wardrop equilibria

Non-Atomic Congestion Games — ¥

@ Continuum of players / each one has a negligible impact on congestion.

o Perfectly divisible / aggregate demands d; > 0 for each OD pair t € T.

Let .7 be the set of splittings (y, x) of the demands d; into route-flows y, > 0,
together with their induced edge-loads x. :

dt = Zre‘%t Yr (Vt € T)7
Xe =Y 5e¥r (Ve€E).
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Nonatomic games and Wardrop equilibria
Non-Atomic Congestion Games — ¥

@ Continuum of players / each one has a negligible impact on congestion.

o Perfectly divisible / aggregate demands d; > 0 for each OD pair t € T.

Let .7 be the set of splittings (y, x) of the demands d; into route-flows y, > 0,
together with their induced edge-loads x. :

dt = Zre‘%t Yr (Vt € T)7
Xe =Y 5e¥r (Ve€E).

A Wardrop equilibrium is a pair (3,%X) € .F that uses only shortest routes:

(VteNVrr'eZ) 7>0= clk) <Y colSe).

ecr ecr’
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[QICEIEELIN  Nonatomic games and Wardrop equilibria

Example: Single OD with 2 identical parallel links.

d=

At equilibrium the demand splits 50%-50% : (2, ).
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Introduction Nonatomic games and Wardrop equilibria

Example: Single OD with 2 identical parallel links.

d=

At equilibrium the demand splits 50%-50% : (2, ).

Variational characterization:

Theorem (Beckmann-McGuire-Winsten, 1955)

Wardrop equilibria are exactly the optimal solutions of the convex program

Jmin, 3 e
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RN Nonatomic games and Wardrop equilibria

Atomic Splittable Congestion Games — ¥°

Atomic splittable congestion games are similar in that demands are continuous
and can be split over different routes, except that now:

© There are finitely many players, each one controls a fraction of the demand.

@ Each player has a non-negligible impact on congestion and exploits her
market power by strategically splitting the demand over the available routes.
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Atomic Splittable Congestion Games — ¥°

Atomic splittable congestion games are similar in that demands are continuous
and can be split over different routes, except that now:

© There are finitely many players, each one controls a fraction of the demand.

@ Each player has a non-negligible impact on congestion and exploits her
market power by strategically splitting the demand over the available routes.

Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them
tends to 0, the splittable equilibria converge to a Wardrop equilibrium.
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RN Nonatomic games and Wardrop equilibria

Atomic Splittable Congestion Games — ¥°

Atomic splittable congestion games are similar in that demands are continuous
and can be split over different routes, except that now:

© There are finitely many players, each one controls a fraction of the demand.

@ Each player has a non-negligible impact on congestion and exploits her
market power by strategically splitting the demand over the available routes.

Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them
tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

In what follows we address the discrete cases: unsplittable and random demands.
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Weighted Congestion Games — ¢(w)

A weighted congestion game has a finite set of players i € N with OD pairs t; € T,
and unsplittable weights w; > 0 that must be routed over a single path r; € %,
chosen at random using a mixed strategy m; € A(%y,).
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A weighted congestion game has a finite set of players i € N with OD pairs t; € T,
and unsplittable weights w; > 0 that must be routed over a single path r; € %,
chosen at random using a mixed strategy m; € A(%y,).

® Y, =) . cywilf,—p are the random route-flows

® Xe = . cnyWilfecry are the corresponding edge-loads
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Weighted Congestion Games — ¢(w)

A weighted congestion game has a finite set of players i € N with OD pairs t; € T,
and unsplittable weights w; > 0 that must be routed over a single path r; € %,
chosen at random using a mixed strategy m; € A(%y,).

® Y, =) . cywilf,—p are the random route-flows

® Xe = . cnyWilfecry are the corresponding edge-loads

A mixed strategy profile m = (m;)icn is a Nash equilibrium iff for each player i € N
and routes r,r’ € %y, with w;(r) > 0 we have

E [ZeerCE(Xe”ri = r] <E [ZeE,, ce(Xe)|ri = r’]
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o WCGs with identical weights w; = w are potential games and admit pure
equilibria (Rosenthal'73). The potential for a profile r = (r;)jen is

ne(r)
o= clkw)yw ;  n(r)E{icN:ecr}

ecE k=1

@ For heterogeneous weights we only have the existence of mixed equilibria.
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Example: Routing n players over 2 identical parallel links.

n=

Symmetric mixed equilibrium: each player randomizes (%, %)
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Example: Routing n players over 2 identical parallel links.

n=

Symmetric mixed equilibrium: each player randomizes (%, %)

If players’ weights are w; = d/n then we have random edge-loads
Xe ~ %’Binomial(n, %)

which converge almost surely to the Wardrop equilibrium (g7 g)
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Example: Routing n players over 2 identical parallel links.

n=

Symmetric mixed equilibrium: each player randomizes (%, %)

If players’ weights are w; = d/n then we have random edge-loads
Xe ~ %’Binomial(n, %)

which converge almost surely to the Wardrop equilibrium (g7 g)

What happens for other non-symmetric equilibria? What if weights are not
homogeneous? And with different costs? And more complex topologies?
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Weighted atomic games — Wardop equilibrium
Wardrop Convergence for Vanishing Weights
Let 7" be a sequence of mixed equilibria for weighted ACGs ¢(w") with
a) |N"| — o0

b) maxien v — 0
o drs Do W] —dp forallte T
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Weighted atomic games — Wardop equilibrium
Wardrop Convergence for Vanishing Weights

Let " be a sequence of mixed equilibria for weighted ACGs ¢(w") with
a) [N — o0
b) maXcnn Wln —0
o dhEY . w—dp forallteT

Theorem

@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(¥, %) is a Wardrop equilibrium with demands d, and costs c(-).
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Let " be a sequence of mixed equilibria for weighted ACGs ¢(w") with
a) [N — o0
b) maXcnn Wln —0
o dhEY . w—dp forallteT

Theorem
@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(7, %) is a Wardrop equilibrium with demands d; and costs c(-).

@ Along any convergent subsequence, the random route-flows and edge-loads
(Y™, X") converge in L? to the (constant) Wardrop equilibrium (¥,X).
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Weighted atomic games — Wardop equilibrium
Wardrop Convergence for Vanishing Weights

Let " be a sequence of mixed equilibria for weighted ACGs ¢(w") with
a) [N — o0
b) maXcnn Wln —0
o dhEY . w—dp forallteT

Theorem
@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(7, %) is a Wardrop equilibrium with demands d; and costs c(-).

@ Along any convergent subsequence, the random route-flows and edge-loads
(Y™, X") converge in L? to the (constant) Wardrop equilibrium (¥,X).

. . . o . L2
@ If the costs co(-) are strictly increasing, then X is unique and X" = X.
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Weighted atomic games — Wardop equilibrium
Wardrop Convergence for Vanishing Weights

Let " be a sequence of mixed equilibria for weighted ACGs ¢(w") with
a) [N — o0
b) maXcnn Wln —0
o dhEY . w—dp forallteT

Theorem

@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(7, %) is a Wardrop equilibrium with demands d; and costs c(-).

@ Along any convergent subsequence, the random route-flows and edge-loads
(Y™, X") converge in L? to the (constant) Wardrop equilibrium (¥,X).

2
@ If the costs c.(-) are strictly increasing, then X is unique and X" Lx
Q Ifc. € C? with c,(-) > 0, then there is a constant k such that
IX" = K|z < w(y/maxien w] +/[[d" = d||1).
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Introd Games with random players —s Poisson equilibrium

Simple and expected... but reality looks more like this

Copenhagen — Source: DTU Transport (www.transport.dtu.dk)

Figure 2: Example of real time illustration of congestion (Source:
Vejdirektoratet, www.trafikken.dk)
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RN  Games with random players —s Poisson equilibrium

Traffic count data — Dublin 2017-2018

Thursday 7.00-7:10 | Total Count = 25264 Thursday 7:10-720 | Total Count - 28815 Thursday 7:20-7:30 | Total Count - 31133
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Thursday 7:30-740 | Total Count - 3259 Thursday 7:40-750 | Total Count - 36296 Thursday 7:50-800 | Total Count - 38919
« 50

1 10 200 210 20 20 139 147 155 163 171 179 187 195 208 211 219 227 235 243

Data source: Transport Infrastructure Ireland

https://www.tii.ie/roads-tolling/operations-and-maintenance/traffic-count-data/
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Games with random players —s Poisson equilibrium
Bernoulli Congestion Games — ¥(p)

A Bernoulli congestion game has a finite set of players i € N with OD pairs t; € T,
unit weights w; = 1, and a probability of being active

Each player i € N selects a route r; € %y, using a mixed strategy m; € A(%y,).
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Games with random players —s Poisson equilibrium
Bernoulli Congestion Games — ¥(p)

A Bernoulli congestion game has a finite set of players i € N with OD pairs t; € T,
unit weights w; = 1, and a probability of being active

Each player i € N selects a route r; € %y, using a mixed strategy m; € A(%y,).

o Y, =) . nUl,—y are the random route-flows
® Xe = ;cnUilfecry are the corresponding edge-loads

A strategy profile m = (m;)icn is a Bayes-Nash equilibrium if for each player i€ N
and routes r,r' € %y, with wi(r) > 0 we have

E [Eeerce(xe)lui =Ln= r] <E [Eeer’ CG(XG)IUI' =Lrn= r/] .

REMARK. Costs need only be defined over the integers ce : N — R .
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Games with random players — Poisson equilibrium
Bernoulli ACGs are Potential Games

Proposition

Every Bernoulli ACG is a potential game with potential

Ne(r)
O EE D D k)| i N E DU
ecE k=1 i-ecr;

Corollary

Every Bernoulli ACG has Nash equilibria in pure strategies.
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RN  Games with random players —s Poisson equilibrium

Example: Routing n random players over 2 identical parallel links.

c(x)

n=
c(x)

Symmetric mixed equilibrium: each player randomizes (%7 %)
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RN  Games with random players —s Poisson equilibrium

Example: Routing n random players over 2 identical parallel links.
c(x)
n=
()
Symmetric mixed equilibrium: each player randomizes (%7 %)
If each player is present with probability p; = d/n, the random edge-loads are
X. ~ Binomial(n, 2—‘:)

which for large n converges to a Poisson($).
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RN  Games with random players —s Poisson equilibrium

Example: Routing n random players over 2 identical parallel links.

c(x)
n=
()
Symmetric mixed equilibrium: each player randomizes (%7 %)
If each player is present with probability p; = d/n, the random edge-loads are
X. ~ Binomial(n, 2—‘:)

which for large n converges to a Poisson($).

What happens for other non-symmetric equilibria? What if players are not
homogeneous? And with different costs? And more complex topologies?
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RN  Games with random players —s Poisson equilibrium

Toolkit — Sums of Bernoullis ~ Poisson

The total variation distance between two integer-valued random variables U, V'is

drv(U, V) =3 [P(U= k) —P(V=K)|.

keN

Theorem (Barbour & Hall 1984, Borizov & Ruzankin 2002))

Let S= X1+ ...+ X, be a sum of independent Bernoullis with P(X; = 1) < p,
and X ~ Poisson(x) with the same expectation E[X] = x = E[S]. Then

drv($,X) < p.
Moreover, if h: N — R is such that E|A2h(X)| < v, then

[EA(S) — EA(X)| <

xv peP
2 1-p)*

REMARK: A2h(x) = h(x+2) — 2h(x+1) + h(x).
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RN  Games with random players —s Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Standing Assumption: E[X?c.(1+X)] < oo for all e € E and X ~ Poisson(x).

This is a mild condition. It holds for costs with polynomial or exponential growth.
It fails for fast growing costs such as factorials k! or bi-exponentials exp(exp(k)).

We introduce the expected cost functions ¢ : Ry — R, defined by

Ee(x) 2 Elce(14+X)] = Y57 co(14+K)e ™5
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Games with random players —s Poisson equilibrium
Poisson Convergence for Vanishing Probabilities

Let " be a sequence of Bayes-Nash equilibria for Bernoulli ACGs ¢4(p") with
a) |N"| = oo,
b) maxenn pf! — 0,

) =Y e Pl —d forallteT.
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Poisson Convergence for Vanishing Probabilities

Let " be a sequence of Bayes-Nash equilibria for Bernoulli ACGs ¢4(p") with
a) |N"| = oo,
b) maxenn pf! — 0,

) =Y e Pl —d forallteT.

Theorem

@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(¥, %) is a Wardrop equilibrium with demands d; and costs €(-).
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RN  Games with random players —s Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Let " be a sequence of Bayes-Nash equilibria for Bernoulli ACGs ¢4(p") with
a) |N"| = oo,
b) maxenn pf! — 0,

) =Y e Pl —d forallteT.

Theorem

@ The expected flows (y", x") = (EY",EX") are bounded and each cluster point
(¥, %) is a Wardrop equilibrium with demands d; and costs €(-).

@ Along any convergent subsequence we have
e the edge-loads X converge in total variation to X. ~ Poisson(X.),
e the route-flows Y] converge in total variation to Y, ~ Poisson(¥;),
e the Poisson limits Y, are independent.
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RN  Games with random players —s Poisson equilibrium

Poisson convergence for vanishing probabilities

Corollary

If the costs c.(k) are non-decreasing and non-constant, then the ¢.(-)’s are strictly
increasing, the edge-loads X, are the same in all Wardrop equilibria, and for every
sequence " of Bayes-Nash equilibria we have

X Y X, ~ Poisson(Xe).
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RN  Games with random players —s Poisson equilibrium

Poisson convergence for vanishing probabilities

Corollary

If the costs c.(k) are non-decreasing and non-constant, then the ¢.(-)’s are strictly
increasing, the edge-loads X, are the same in all Wardrop equilibria, and for every
sequence " of Bayes-Nash equilibria we have

X Y X, ~ Poisson(Xe).

Theorem

If ce(2) > co(1) for all e € E then there is a constant k such that

drv(X, Xe) < k(y/maxien pf + +/[|d" — dl1).
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RN  Games with random players —s Poisson equilibrium

Summary and Comments

@ Both w! — 0 and p7 — 0 lead to different non-atomic limit games:

o For vanishing weights, the random edge-loads X2 converge in L? to
the constants edge-loads Xe.

e For vanishing probabilities, Xz remain random in the limit and converge
in total variation to X. ~ Poisson(X.).

(Roberto Cominetti — UAI) Routing Games in Congested Networks 21/36



RN  Games with random players —s Poisson equilibrium

Summary and Comments

@ Both w! — 0 and p7 — 0 lead to different non-atomic limit games:

o For vanishing weights, the random edge-loads X2 converge in L? to
the constants edge-loads Xe.

e For vanishing probabilities, Xz remain random in the limit and converge

in total variation to X. ~ Poisson(X.).

@ The Poisson limit is consistent with empirical data on traffic counts.
Also pf! — 0 is quite natural... congestion depends on players that are
present on a small window around your departure time.
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the constants edge-loads Xe.

e For vanishing probabilities, Xz remain random in the limit and converge
in total variation to X. ~ Poisson(X.).

@ The Poisson limit is consistent with empirical data on traffic counts.
Also pf! — 0 is quite natural... congestion depends on players that are
present on a small window around your departure time.

© The Poisson limit is a special case of Myerson’s Poisson games: the
normalized loads o(r|t) = y,/d; for r € %, yield an equilibrium in the
Poisson game (Int J Game Theory 1998).
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RN  Games with random players —s Poisson equilibrium

Summary and Comments

@ Both w! — 0 and p7 — 0 lead to different non-atomic limit games:

o For vanishing weights, the random edge-loads X2 converge in L? to
the constants edge-loads Xe.

e For vanishing probabilities, Xz remain random in the limit and converge
in total variation to X. ~ Poisson(X.).

@ The Poisson limit is consistent with empirical data on traffic counts.
Also pf! — 0 is quite natural... congestion depends on players that are
present on a small window around your departure time.

© The Poisson limit is a special case of Myerson’s Poisson games: the
normalized loads o(r|t) = y,/d; for r € %, yield an equilibrium in the
Poisson game (Int J Game Theory 1998).

@ Poisson games were defined without reference to a limit process, so our
convergence result as well as the connection with Wardrop seem new.
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Price-of-Anarchy in Atomic Congestion Games

© Price-of-Anarchy in Atomic Congestion Games
@ Convergence of PoA along sequences of ACGs
@ PoA for Bernoulli ACGs
@ PoA for ACGs with affine costs
@ Price-of-Stability
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Convergence of PoA along sequences of ACGs
Convergence of PoA along sequences of ACGs

For an atomic congestion game ¢ we denote
Q) = Er [ D ece Xe ce(Xe)] (expected social cost)
Copt(¢) = min, () (minimum social cost)

PoA(9) = maxyce(g) C(m)/ Copt(¥)  (price-of-anarchy)
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Price-of-Anarchy in Atomic Congestion Games Convergence of PoA along sequences of ACGs

Convergence of PoA along sequences of ACGs

For an atomic congestion game ¢ we denote
Q) = Er [ D ece Xe ce(Xe)] (expected social cost)
Copt(¢) = min, () (minimum social cost)
PoA(9) = maxyce(g) C(m)/ Copt(¥)  (price-of-anarchy)

Theorem

Under the same conditions of the convergence theorems for weighted and
Bernoulli ACGs, we have

PoA(¥9(w")) — PoA(Wardrop)
PoA(¥4(p")) — PoA(Poisson)
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Price-of-Anarchy in Atomic Congestion Games [ZANTCIEE T[N eler]

PoA for Bernoulli ACGs — Homogeneous players

How does PoA behaves as a function of the probabilities p; ?

Theorem

Let 4P denote the set of Bernoulli ACGs with p; < p for all players. The largest
values of PoA(¥(p)) occur for homogeneous players with p; = p.
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PoA for Bernoulli ACGs — Homogeneous players

How does PoA behaves as a function of the probabilities p; ?

Theorem

Let 4P denote the set of Bernoulli ACGs with p; < p for all players. The largest
values of PoA(¥(p)) occur for homogeneous players with p; = p.

From now on we focus on the homogeneous case and study PoA and PoS as a
function of p when we move from the deterministic case p = 1 to the limit p | 0.

PoA(p) = sup max ((m)/Cope(¥4P) (Price-of-Anarchy)
@p TEE(GP)

PoS(p) = sup min ((m)/Cope(¥P) (Price-of-Stability)
@gp TEE(YGP)
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Related Literature

@ Related models

- Non-atomic with stochastic demand
(Wang, Doan and Chen, 2014; Correa, Hoeksma and Schréder, 2019)

- Smoothness with incomplete information (Roughgarden, 2015)

- Perception based (Kleer and Schafer, 2018)
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@ PoA for congestion games with affine costs
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5

- PoA(¥) < 3 for atomic deterministic (Christodoulou and Koutsoupias, 2005;
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Related Literature

@ Related models

- Non-atomic with stochastic demand
(Wang, Doan and Chen, 2014; Correa, Hoeksma and Schréder, 2019)

- Smoothness with incomplete information (Roughgarden, 2015)

- Perception based (Kleer and Schéfer, 2018)

@ PoA for congestion games with affine costs

- PoA(%) < % for non-atomic (Roughgarden and Tardos, 2002)
5

- PoA(%) < 3 for atomic deterministic (Christodoulou and Koutsoupias, 2005;
Awerbuch, Azar and Epstein, 2005)

5
As a consequence of the latter we get PoA(p) < 3.

But we can find sharper bounds... and we expect PoA(p) ~ % for small p.
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Smoothness Framework

Proposition

A Bernoulli ACG with homogeneous players is equivalent to a deterministic
unweighted ACG for the auxiliary costs

ce(k) = E[ce(1 + B)] with B ~ Binomial(k—1, p)
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Smoothness Framework

Proposition

A Bernoulli ACG with homogeneous players is equivalent to a deterministic
unweighted ACG for the auxiliary costs

ce(k) = E[ce(1 + B)] with B ~ Binomial(k—1, p)

Lemma (Roughgarden, 2015)

Let & be an unweighted ACG which is (), 1)-smooth with A > 0 and p € (0,1),
that is to say

(Vs,s €S) > ien (s, s—i) < AC(S) 4+ ((s).

Then we have PoA(¥) <

1—p-”
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Smoothness Framework — Affine Costs

Lemma

Let @ = {(k,m) € N2 : k > 1} and suppose that A > 0 and 1 € (0,1) satisfy
k(1+pm) < Xk(1—p+pk) +pm(1—p+pm)  V(k,m)e 2. (1)

Then every stochastic ACG 4P with homogeneous players and affine costs is

(A, p)-smooth, and therefore PoA(p) < ﬁ
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Smoothness Framework — Affine Costs

Lemma
Let @ = {(k,m) € N2 : k > 1} and suppose that A > 0 and 1 € (0,1) satisfy
k(1+pm) < Xk(1—p+pk) +pm(1—p+pm)  V(k,m)e 2. (1)

Then every stochastic ACG 4P with homogeneous players and affine costs is

(A, p)-smooth, and therefore PoA(p) < ﬁ

The best combination of A and p for fixed p requires to solve

N ; - i
B(p) = /\>0Ttlen(o,1){1*“ . subject to (1)}

which reduces to a 1D problem noting that the smallest A compatible with (1) is

_ k(1+pm)—p m(1—p+pm)
A= (kfnu)re):? k1=p+pk)
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[T I NPT AT RN el PoA for ACGs with affine costs

Smoothness Framework — Affine Costs

The previous reduction leads to the equivalent minimization problem

. R
Blp) = inf ep(i5) = inf @p(y)

where @p(+) is the convex envelop function

_ 1+pm k(14+pm)—m(1—p+pm)
Pply)= Ssup 31— + —
p( ) (km)e # 1—p+pk k(1—p+pk)

For each p the unique optimum y can be found explicitly, and then we recover the
optimal combination (A, u).
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Upper Bounds for the Price-of-Anarchy

Theorem
Set Pp = 3 and py ~ 0.3774 the unique real root of 8p> + 4p*> = 1. Then
4/3 if0 < p < po,
1+p++/p(2+p) = -
_ ) VPR en < b < By,
4 POA(p) < B(p) = 1—p+\/p(27+2p) ITpo = pP=p1
l+p+i, ifpp<psl,
25+
20+
150
1.0 L L . !
0.0 0.2 0.4 0.6 0.8 1.0

b
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Lower Bounds for Large p

’
7’ \
, \
s 7
hs
* X ife:h,-
ife=g

4’-2‘ c() = { px
; A 0 if dashed

'/;2/05"‘“ -2 a
S Ot o o
P

= PoA(9P) =1+ p+ :
(97) PHI T,
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Lower Bounds for Small p

TMX Ife:e

Ce(x) = 4 x ife=g¢

2k players

if dashed

= PoA(¥4P) = PoS(¥P) > % — % as k— oo
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[T I NPT AT RN el PoA for ACGs with affine costs

Lower Bounds for Intermediate p

[y
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Bounds on the Price-of-Anarchy are Tight

3 if0<p<po

1 v/ p(2 e — —

PoA(p) = B(p) = % if o < p<p1
l+p+£; fRp<p<l

0.0 0.2 0.4 0.6 0.8 1.0

n
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Price-of-Anarchy vs Price-of-Stability

Combining with Kleer and Schafer (2018), we also get tight bounds for PoS
4/3 if 0<p<po

PoS(p)—{ 1+p/2+p) if p>Ppo

PoA(p)

0.0 0.2 0.4 0.6 0.8 1.0
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Price-of-Anarchy in Atomic Congestion Games

Conclusion

@ Convergence of ACGs towards non-atomic games:

e vanishing weights — Wardrop
e vanishing probabilities — Poisson/Wardrop

@ Convergence of PoA/PoS, plus sharp bounds for affine costs

© Some open questions

- Mixed limits: weights & probabilities
- Tight bounds for polynomial costs
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Price-of-A

in Atomic Congestion Games

Thanks !

Questions ?
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