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Introduction: a static symmetric game

Let Q ⊆ Rd be compact and F : Q× P(Q)→ R be continuous. We
consider a game defined by

I N players.

I Set of actions Q (the same for all the players).

I A cost functional Fi : QN → R for Player i defined by

Fi(x1, . . . , xi, . . . , xN ) = F

xi, 1

N − 1

∑
j 6=i

δxj

 .

Example: N = number of swimmers, Q is a beach and

F

xi, 1

N − 1

∑
j 6=i

δxj

 = αd(xi, snack bar)− β

N − 1

∑
j 6=i

|xi − xj |
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Introduction: A static symmetric game

In order to obtain the existence of Nash equilibria, we consider the game
with mixed strategies, i.e.

I The new set of actions is P(Q) (the same for all the players).

I The new cost functional Frel,i : P(Q)N → R for Player i defined by

Frel,i(m1, . . . ,mi, . . . ,mN ) =

∫
QN

Fi(x1, . . . , xi, . . . , xN )⊗Nj=1dmj(xj).

A configuration (m̄1, . . . , m̄N ) is a Nash equilibrium if ∀ i = 1, . . . , N

Frel,i(m̄1, . . . , m̄i, . . . , m̄N ) ≤ Frel,i(m̄1, . . . ,m, . . . , m̄N ) ∀ m ∈ P(Q).

This relaxed framework and the symmetry of the game allow to show the
existence of at least one equilibrium having the form

(m̄N , . . . , m̄N ) for some m̄N ∈ P(Q).
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I The crucial point here is that, as N →∞, any limit point m∗ of
mN satisfies∫

Q

F (x,m∗)dm∗(x) = min
m∈P(Q)

∫
Q

F (x,m∗)dm(x),

or, equivalently,

supp(m∗) ⊆ argmin {F (x,m∗) | x ∈ Q} .

Consequently, any of the two previous relations can be used to
define the notion of MFG equilibrium.
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The dynamic and deterministic case (based on a joint work with M.

Fischer)

A model problem in continuous time:

I Consider two continuous functions f , g : Rd × P1(Rd)→ R,
differentiable w.r.t. the first variable and satisfying that

sup
m∈P1(Rd)

{‖f(·,m)‖C1 + ‖g(·,m)‖C1} ≤ C,

I Consider N players, positioned at x1, . . . , xN ∈ Rd at time t = 0.

I The set of actions for Player i is A(xi), where

(∀ x ∈ Rd) A(x) :=
{
γ ∈ H1([0, T ];Rd)

∣∣ γ(0) = x
}
.

I Given γ1 ∈ A(x1),..., γN ∈ A(xN ), the cost for Player i is

ji(γ1, . . . , γi, . . . , γN ) = j

(
γi,

1

N − 1

∑
j 6=i

δγj

)
,
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where, setting Γ = C([0, T ];Rd), j : H1([0, T ];Rd)× P(Γ)→ R is given by

j(γi,m) :=

∫ T

0

[
1
2 |γ̇i(t)|

2 + f(γi(t),m(t))
]

dt+ g (γi(T ),m(T )) ,

with
m(t) := e(t)]m ∀ t ∈ [0, T ].

Notice that

e(t)]

(
1

N − 1

∑
j 6=i

δγj

)
=

1

N − 1

∑
j 6=i

δγj(t).

The previous game is not symmetric due to the heterogeneity of the
initial conditions. In order to obtain a symmetric game let us

I assume that the initial positions of the players are randomly,
identically and independently distributed.

I We denote by m0 their common initial distribution, which is
assumed to have a compact support.
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I In this context, it is natural to define the action set of the players as

A :=
{
γ : Rd → Γ

∣∣ γ is Borel meas. and

γx := γ(x) ∈ A(x), ∀ x ∈ supp(m0)} .

I Accordingly, given the strategies γ1 ∈ A, ..., γN ∈ A, the cost
functional for Player i is redefined as

Ji(γ1, . . . , γi, . . . , γN ) = J(γi, (γj)j 6=i),

where

J(γi, (γj)j 6=i) :=

∫
(Rd)N

j

(
γxi
i ,

1

N − 1

∑
j 6=i

δ
γ
xj
j

)
⊗Nj=1 dm0(xj).

I Set mj := γj]m0 (i.e. dmj(γ) = dδγx
j
(γ)dm0(x)). Then

J(γi, (γj)j 6=i) =

∫
ΓN

j

(
γ′i,

1

N − 1

∑
j 6=i

δγ′j

)
⊗Nj=1 dmj(γ

′
j).
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I If (γ̄1, . . . , γ̄i, . . . , γ̄N ) is a Nash equilibrium for the previous game,
then there exists C > 0, independent of N , such that

(∀ x ∈ supp(m0)) ‖ ˙̄γx‖∞ ≤ C.

I Set QC := {γ ∈W 1,∞([0, T ];Rd) | ‖γ̇‖∞ ≤ C, γ(0) ∈ supp(m0)}.
I It is natural to consider as set of strategies the compact set

Arel := {m ∈ P(Γ) | e0]m = m0, supp(m) ⊆ QC} .

and, as cost functional for Player i,

Jrel,i(m1, . . . ,mi, . . . ,mN ) = Jrel(mi, (mj)j 6=i), with

Jrel(mi, (mj)j 6=i) =

∫
ΓN

j

(
γi,

1

N − 1

∑
j 6=i

δγj

)
⊗Nj=1 dmj(γj).
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I Then standard techniques show the existence of a Nash equilibrium
for the previous game having the form (m̄N , . . . , m̄N ).

Theorem: As N →∞, every limit point m∗ of (m̄N )N∈N satisfies∫
Γ

j(γ,m∗)dm∗(γ) = min
m∈Arel

∫
Γ

j(γ,m∗)dm(γ),

or, equivalently,

supp(m∗) ⊆ {γ ∈ Γ | γ ∈ argmin{j(γ′,m∗) | γ′(0) = γ(0)}} . (∗)

I A measure m∗ ∈ Arel is called a mean field game equilibrium if it
satisfies (∗).

I The previous analysis shows, in particular, the existence of a MFG
equilibrium.
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I Suppose that in addition we have

sup
m∈P1(Rd)

{‖f(·,m)‖C2 + ‖g(·,m)‖C2} ≤ C,

and that m0 is absolutely continuous w.r.t. to Ld.

I Then, associated to a MFG equilibrium m∗, there exists γ∗ ∈ A
such that m∗ = γ∗]m0.

I Set ρ(t) = m∗(t) and define the value function

v(t, x) = inf
{∫ T

t

[
1
2 |γ̇(s)|2 + f(γ(s), ρ(s))

]
ds+ g (γ(T ), ρ(T )) |

γ ∈ H1([t, T ];Rd), γ(t) = x
}
.

I Then the couple (v, ρ) solves

−∂tv + 1
2 |∇v|

2 = f(x, ρ(t)), v(·, T ) = g(·, ρ(T )),

∂tρ− div(∇vρ) = 0, ρ(·, 0) = m0.

}
(MFG)
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I Under the same assumptions, we also have the existence of γ̄N ∈ A
such that m̄N = γ̄N ]m0.

I As in the limit case, m̄N can be characterized by the solution
(vN , ρN ) of a PDE system similar system to (MFG).

I This allows a convergence proof based on PDE techniques.

I Uniqueness of a solution to (MFG) holds if, for h = f , g,∫
Q

(h(x, µ)− h(x, µ′)) d(µ− µ′)(x) ≥ 0, ∀ µ, µ′ ∈ P1(Rd).

I Related works:

Existence of MFG equilibria in the deterministic case: Lasry-Lions ’07,
Cannarsa-Capuani ’18, Cannarsa-Capuani-Cardaliaguet ’18,
Mazanti-Santambrogio ’18, Achdou-Mannucci-Marchi-Tchou ’19,
Cannarsa-Mendico ’19,...

Convergence result: Lacker ’16, Fischer ’17, Cardaliaguet-Delarue-Lasry-Lions
’19, Lacker ’20, Gangbo-Mészáros ’20,...
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Approximation of deterministic mean field games (based on a joint

work with S. Hadikhanloo and an ongoing work with J. Gianatti)

Consider the MFG system

−∂tv + 1
2

∣∣∇v∣∣2 = f(x, ρ(t)) in [0, T ]× Rd

v(T, ·) = g(·, ρ(T )) in Rd

∂tρ− div
(
∇vρ

)
= 0 in [0, T ]× Rd

ρ(0, ·) = m0 in Rd.


(MFG)

I A semi-Lagrangian scheme to solve (MFG) has been proposed in
Carlini-S. ’14. Full-convergence result when d = 1.

I Fourier methods to treat (MFG) have been proposed recently in
Nuberkyan-Saúde’19 and Li-Jacobs-Li-Nuberkyan-Osher ’20.

I We describe now an fully-discrete scheme, which approximate
general MFG equilibria in the form (∗).
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I The discretization in Carlini-S.’14 is mainly based on the
representation formulae

v(t, x) = inf
∫ T
t

[
1
2
|α(s)|2 + f(γ(s),m(s))

]
ds+ g(γ(T ),m(T ))

s.t. γ̇(s) = α(s) in (t, T ), γ(t) = x

= inf
∫ T
t

[
1
2
|γ̇(s)|2 + f(γ(s),m(s))

]
ds+ g(γ(T ),m(T ))

s.t. γ(t) = x,

and
ρ(t) = γ(·)(t)]m0,

where, for x ∈ Rd, γx(t) is the solution, evaluated at time t, to

γ̇(s) = −∇v(s, γ(s)) in (0, T ), γ(0) = x.
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On the approximation of the HJB equation

Approximation of optimal control problem solved by the typical agent

At the equilibrium, a typical agent solves a problem having the form

inf

∫ T

0

[
1
2 |α(t)|2 + f(γ(t))

]
dt+ g(γ(T )) s.t γ̇(t) = α(t), γ(0) = x.

The associated HJB equation is given by

−∂tv + 1
2

∣∣∇v∣∣2 = f in [0, T ]× Rd

v(T, ·) = g in Rd

I Let ∆t > 0, set tk = k(∆t) and T∆t := {0, t1, . . . , tn}, with
tn = T . A standard semi-discrete scheme to approximate v is

v∆t(tk, x) = inf
α∈Rd

{
∆t
[
|α|2

2 + f(x)
]

+ v∆t(tk+1, x+ ∆tα)
}
,

v∆t(T, x) = g(x).
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I Given a space-step ∆x > 0, set G∆x = {xi = i(∆x) | i ∈ Zd}. The
fully-discrete SL scheme is

v∆t,∆x(tk, xi) = inf
α∈Rd

{
∆t
[
|α|2

2
+ f(xi)

]
+ I[v∆t,∆x](tk+1, xi + ∆tα)

}
,

v∆t,∆x(T, xi) = g(xi),

where I[·] is an interpolation operator associated to a triangulation
with vertices in G∆x.

I Given the particular structure of the dynamics, we can avoid an
infinite grid and, more importantly, interpolation by choosing
controls such that

xi + ∆tα is a grid point.

Moreover, since the optimal control for the continuous problem will
be bounded by some C > 0, it is natural to impose

α =
xj − xi

∆t
, |α| ≤ C.
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I Setting G∆x(xi) = {xj ∈ G∆x | |xj − xi| ≤ C∆t}, we get

v∆t,∆x(tk, xi) = inf
xj∈G∆x(xi)

{
∆t

[
1
2

∣∣∣xj−xi∆t

∣∣∣2 + f(xi)

]
+ v∆t,∆x(tk+1, xj)

}
,

v∆t,∆x(T, xi) = g(xi),

or, equivalently,

v∆t,∆x(tk, xi) = inf
p∈P(G∆x(xi))

{ ∑
xj∈G∆x(xi)

pj

[
∆t

[
1
2

∣∣∣xj−xi

∆t

∣∣∣2 + f(xi)

]
+v∆t,∆x(tk+1, xj)

]}
,

v∆t,∆x(T, xi) = g(xi).

I For each (tk, xi) the problem defined by v∆t,∆x(tk, xi) can have
several solutions. In order to get uniqueness, for ε > 0, consider the
entropy penalized scheme



On the approximation of first order mean field games

Approximation of deterministic mean field games

On the approximation of the HJB equation

vε∆t,∆x(tk, xi) = inf
p∈P(G∆x(xi))

{ ∑
xj∈G∆x(xi)

pj

[
∆t

[
1
2

∣∣∣xj−xi∆t

∣∣∣2 + f(xi)

]

+vε∆t,∆x(tk+1, xj) + ε log pj

]}
,

vε∆t,∆x(T, xi) = g(xi).

I For every tk, xi and ε > 0, the previous problem has a unique
minimizer popt(xi, ·, tk).

popt(xi, xj , tk) denotes “optimal probability” of moving from xi to xj at time tk.

I If (∆tn,∆xn, εn)→ 0, ∆xn/∆tn → 0, and εn| log(∆xn)|/∆tn → 0,
then for every compact set K ⊆ Rd we have

sup
(t,x)∈Tn×(G∆xn∩K)

∣∣∣vεn∆tn,∆xn
(t, x)− v(t, x)

∣∣∣ →
n→∞

0.

I The previous scheme and the convergence result can be extended to
several interesting contexts.
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Approximation of the MFG system

We consider the following discretization of the mean field game problem

vε∆t,∆x(tk, xi) = inf
p∈P(G∆x(xi))

∑
xj∈G∆x(xi)

pj
[
ci,j(pj ,m

ε
∆t,∆x(tk, ·)) + vε∆t,∆x(tk+1, xj)

]
vε∆t,∆x(T, xi) = g

(
xi,m

ε
∆t,∆x(T, ·)

)
mε

∆t,∆x(tk+1, xj) =
∑

xi∈G∆x

popt(xi, xj , tk)mε
∆t,∆x(tk, xi)

mε
∆t,∆x(0, xi) = m̃0(xi) ∀ xi ∈ G∆x,

where m̃0 is a discretization of the initial distribution,

ci,j(pj ,m) = ∆t

[
1
2

∣∣∣xj−xi

∆t

∣∣∣2 + f(xi,m)

]
+ ε log(pj),

popt(xi, ·, tk) ∈ P(G∆x(xi)) is the unique minimizer of vε∆t,∆x(tk, xi).
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Approximation of the MFG system

I The previous system is a particular instance of discrete time, finite
state space MFGs introduced in Gomes-Mohr-Souza’10.

I Existence of a solution (vε∆t,∆x,m
ε
∆t,∆x) follows from a fixed-point

argument (see Gomes-Mohr-Souza’10).

I If f and g are monotone, i.e. for h = f , g,∑
xj∈G∆x

[h(xj ,m1)− h(xj ,m2)] (m1−m2) ≥ 0 ∀ m1,m2 ∈ P(G∆x),

it is possible to show that the solution is unique.

I Under this monotonicity assumption we will show later how to
compute the equilibrium (vε∆t,∆x,m

ε
∆t,∆x) of (MFGf ).
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Approximation of the MFG system

I Consider a sequence (∆tn,∆xn, εn)→ 0, set

vn = vεn∆tn,∆xn
, mn = mεn

∆tn,∆xn
,

and pnopt the optimal transition probabilities.

I Set m∗,n for the probability measure on Γ induced by m̃n
0 and pnopt.

The main result here is the following.

Theorem: Suppose that ∆xn/∆tn → 0, and εn| log(∆xn)|/∆tn → 0.

Then the following holds

(i) Assume the “weak assumption” on the data f , g and m0. Then,
any limit point m∗ ∈ P(Γ) of (m∗,n)n∈N is a mean field game
equilibrium, i.e. it satisfies (*).

(ii) Assume the “strong assumption” on the data f , g and m0.
Then, if m∗,n → m∗, we have that (vn,mn)→ (v, ρ), where (v, ρ)
is the solution to (MFG) associated to m∗.
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Solving the finite MFG problem

We consider the following “fictitious play” procedure to solve the discrete
problem.

I Consider an arbitrary initial sequence of time marginals
M1 = (M1

0 , . . . ,M
1
N ) and let M̄1 = M1.

I For ` ≥ 1 compute

V `k = HJB(V `k+1, M̄
`
k), V `N = g(M̄ `

N )

and then M `+1
k+1 = EV(M `

k, V
`
k+1), M `+1

0 = m0.

Set

M̄ `+1 :=
1

`+ 1

∑̀
`′=1

M `′ .

I In terms of the best response (BR), the method can be written as

M `+1 = BR(M̄ `).
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Theorem: [Hadikhanloo-S’19] If f and g are monotone and Lipschitz
w.r.t. to the second argument, then (V `,M `, M̄ `)→ (vn,mn,mn).

Example:

I Set d = 1, T = 1, ρσ(z) = e−z
2/2σ2

/
√

2πσ2, with σ = 0.25, and

f(x,m) = 2(x− 0.5)2 + (ρσ ∗m) ∗ ρσ(x)

g(x,m) = 2(x− 0.2)2 + (ρσ ∗m) ∗ ρσ(x)

m0(x) = h(x)∫ 1
0
h(x′)dx′

I[0,1](x), with h(x) := e−
(x−0.75)2

0.02

I Discretization parameters: ∆x = 0.005, ∆t = 0.02 and ε = 0.002.

I We apply the fictitious play procedure to (MFGf ).
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Solving the finite MFG problem

M
`

(left) versus its best response M `+1 (right), at step ` = 1000.

I We have also tested the intuitive procedure M `+1 = BR(M `).
Convergence fails in general. Indeed, there are configurations M
such that M = BR(BR(M)) and M 6= BR(M).
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Extensions (ongoing work with J. Gianatti)

I The previous analysis can be adapted to dynamics having the form

γ̇(t) = A(γ(t)) +B(γ(t))α(t).

For particular instances of the previous dynamics, the existence of
MFG equilibria has been adressed in Cannarsa-Mendico’19 and
Achdou-Mannucci-Marchi-Tchou’19.

I State constraints (Cannarsa-Capuani’18)

γ(t) ∈ K ∀ t ∈ [0, T ].
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