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Inverse problems and large scale optimization

Original image Degraded image
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Inverse problems and large scale optimization

Original image Degraded image

x ∈ R
N y = D(Hx) ∈ R

M

◮ H ∈ R
M×N : matrix associated with the degradation

operator.

◮ D : RM → R
M : noise degradation.

How to find a good estimate of x from the observations y and the

model H in the context of large scale processing?
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Inverse problems and large scale optimization

Variational approach:

An image estimate x̂ ∈ RN is generated by minimizing

(∀x ∈ R
N ) F (x) =

S
∑

s=1

fs(Lsx)

with fs : RPs → R, Ls ∈ RPs×N , Ps > 0.

In the context of maximum a posteriori estimation :

◮ L1: Degradation operator, i.e. H;

◮ f1: Data fidelity (e.g. least squares);

◮ (fs)26s6S : Regularization functions on some linear transforms (Ls)26s6S of
the sought solution.

→ Often no closed form expression or solution expensive to compute

(especially in large scale context).

◮ Need for an efficient iterative minimization strategy !
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Outline

∗ MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

◮ Majorize-Minimize principle
◮ Subspace acceleration
◮ Convergence theorem

∗ BLOCK DISTRIBUTED 3MG ALGORITHM

◮ Block alternating 3MG
◮ Block distributed 3MG
◮ Convergence theorem
◮ Practical implementation

∗ APPLICATION TO 3D DECONVOLUTION

◮ Variational approach
◮ Distributed implementation
◮ Numerical results
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Majorize-Minimize Memory

Gradient algorithm
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Majorize-Minimize principle

1. Find a majorant for F Majorization step

F (·)Q(·,xk)

xk xk+1



Introduction 3MG Algorithm Block Distributed 3MG Algorithm Experimental results Conclusion

SFO:14-10-2020 6/28

Majorize-Minimize principle

1. Find a majorant for F Majorization step

Quadratic tangent majorant of F at xk

(∀x ∈ R
N ) Q(x,xk) = F (xk) +∇F (xk)⊤(x− xk)

+
1

2
(x− xk)⊤A(xk)(x− xk)

where, for every x ∈ R
N , A(x) ∈ R

N×N is a symmetric definite

positive matrix such that

(∀x ∈ R
N ) Q(x,xk)>F (x).

∗ Several methods available to construct matrix A(x) in the

context of inverse problems in image processing.
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Subspace acceleration

2. Minimize in a subspace Minimization step

(∀k ∈ N
∗) xk+1 ∈ Argmin

x∈ranDk

Q(x,xk),

with Dk ∈ R
N×Mk .

◮ ranDk = R
N ⇒ half-quadratic algorithm.

◮ Mk small ⇒ low-complexity per iteration.

Memory-Gradient subspace:

Dk =

{
[−∇F (xk),xk − xk−1] if k > 1

−∇F (x0) if k = 0

3MG algorithm

(similar ideas in NLCG, L-BFGS, TWIST, FISTA, ...)
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3MG algorithm

Initialize x0 ∈ R
N

For k = 0, 1, 2, . . .

Compute ∇F (xk)
If k = 0⌊
Dk = −∇F (x0)

Else⌊
Dk = [−∇F (xk),xk − xk−1]

Bk = ((Dk)⊤A(xk)Dk)†

dk = −DkBk(Dk)⊤∇F (xk)
xk+1 = xk + dk

✓ Low computational cost since Bk is of dimension Mk ×Mk, with Mk ∈ {1, 2}.

✓ Complexity reductions possible by taking into account the structures of F and Dk.
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Convergence theorem [Chouzenoux et al., 2011] [Chouzenoux et al., 2013]

Let assume that:

1. F : RN → R is a coercive, differentiable function.

2. There exists (ν, ν) ∈]0,+∞[2 such that (∀k ∈ N)
ν Id � A(xk) � ν Id,

Then, the following hold:

• ‖∇F (xk)‖ → 0 and F (xk) ց F (x̂) where x̂ is a critical

point of F .

• If F is convex, any sequential cluster point of (xk)k∈N is a

minimizer of F .

• If F is strongly convex, then (xk)k∈N converges to the

unique (global) minimizer x̂ of F

• If F is semi-algebraic, then the sequence
(
xk

)
k∈N

converges to a critical point of F .
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3MG in practical situations

3MG algorithm outperforms state-of-the arts optimization

algorithms in many image processing applications.

Problem: Computational issues with very large-size problems.

Main reasons:

✗ High computational time for calculating the gradient

direction ∇F (xk) and the matrix Bk;

✗ High storage cost for ∇F (xk), Dk and xk.

↓
Block distributed approach
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Block distributed 3MG algorithm
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Block minimization strategy

At each iteration, a subset (i.e. a block) of the entries of the vector

x, indexed by S ⊂ [[1, N ]] with cardinality |S|, are updated, while

the others remain fixed.

x =

x(S) = (xi)i∈S =

Advantages:

✓ Control of the memory thanks to the block alternating strategy;

✓ Scalability using asynchronous implementation (see in few slides).
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Block alternating 3MG

1. Select a block: Choose a non empty Sk ⊂ [[1, N ]].
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Block alternating 3MG

1. Select a block: Choose a non empty Sk ⊂ [[1, N ]].

2. Find a majorant within this block:

Set A(Sk)(x
k) =

(

[A(xk)]p,p
)

p∈Sk . The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,x

k) = F (xk) +∇F(Sk)(x
k)⊤(v − x

k
(Sk)

)

+
1

2
(v − x

k
(Sk)

)⊤A(Sk)(x
k)(v − x

k
(Sk)

).
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Block alternating 3MG

1. Select a block: Choose a non empty Sk ⊂ [[1, N ]].

2. Find a majorant within this block:

Set A(Sk)(x
k) =

(

[A(xk)]p,p
)

p∈Sk . The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,x

k) = F (xk) +∇F(Sk)(x
k)⊤(v − x

k
(Sk)

)

+
1

2
(v − x

k
(Sk)

)⊤A(Sk)(x
k)(v − x

k
(Sk)

).

3. Minimize within the memory gradient subspace

x
k+1
(Sk)

= Argmin
v∈ranD

k

(Sk)

Q(Sk)(v,x
k)

where

(∀i ∈ Sk) (Dk)i =

{

−∇Fi(x
k) if i /∈

⋃k−1
ℓ=0 Sℓ,

[

−∇Fi(x
k)
∣

∣xk
i − xk−1

i ] otherwise.



Introduction 3MG Algorithm Block Distributed 3MG Algorithm Experimental results Conclusion

SFO:14-10-2020 13/28

Block alternating 3MG

1. Select a block: Choose a non empty Sk ⊂ [[1, N ]].

2. Find a majorant within this block:

Set A(Sk)(x
k) =

(

[A(xk)]p,p
)

p∈Sk . The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,x

k) = F (xk) +∇F(Sk)(x
k)⊤(v − x

k
(Sk)

)

+
1

2
(v − x

k
(Sk)

)⊤A(Sk)(x
k)(v − x

k
(Sk)

).

3. Minimize within the memory gradient subspace

x
k+1
(Sk)

= Argmin
v∈ranD

k

(Sk)

Q(Sk)(v,x
k)

where

(∀i ∈ Sk) (Dk)i =

{

−∇Fi(x
k) if i /∈

⋃k−1
ℓ=0 Sℓ,

[

−∇Fi(x
k)
∣

∣xk
i − xk−1

i ] otherwise.

✗ Block alternating MM algorithms may exhibit slow convergence
✗ Parallel versions require specific form of majorant functions (e.g., block diagonal
A(x), see [Cadoni et al., 2016]).
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Block distributed 3MG

Distributed architecture:

b b b b bb

Master

Worker 1 Worker 2 Worker c Worker C

Principle:

∗ After an initialization phase, the master iterates, for

k = 1, 2, . . ., over the following tasks:

◮ Receive update from a worker c, acting on block Sk
c

◮ Update block Sk
c of xk, to create xk+1

◮ Send to worker c a new block Sk+1
c to process.

∗ At each request from the master, the worker applies one

iteration of 3MG on the required block and sends back its result.
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BD3MG (Master)











































































































































Initialization :

Set k = 0, x0 ∈ RN .

For all c ∈ [[1, C]], set S0
c ⊂ [[1, N ]] s.t.

⋂

c∈[[1,C]]

S0
c = ∅,

and send (x0,S0
c , 0|S0

c |
) to worker c.

Define S0 =
⋃

c∈[[1,C]] S
0
c .

While a stopping criterion is not met:

(0) Wait for any worker to send an update

(1) Receive (d(Sk
c )) from a worker c

(2) Update







x
k+1
(Sk

c )
= xk

(Sk
c )

+ d(Sk
c )

x
k+1

(Sk
c )

= xk

(Sk
c )

(3) Choose Sk+1
c ⊂ [[1, N ]]/(Sk/S

k
c )

For every c′ ∈ [[1, C]]/{c}, set Sk+1
c′

= Sk
c′
.

Define Sk+1 = (Sk/S
k
c ) ∪ Sk+1

c

(4) Send (xk+1,Sk+1
c , (xk+1 − xk)

(Sk+1
c )

) to worker c

(5) Increment k = k + 1
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BD3MG (Worker)





While the Master stopping criterion is not met:

(1) Receive (x,S,d(S)) from Master

(2) Set D(S)(x) = [−∇(S)F (x) | d(S)]

(3) Compute A(S)(x) and ∇(S)F (x)

(4) B(S)(x) = (D(S)(x)
⊤A(S)(x)D(S)(x))

†

(6) d′
(S) = −D(S)(x)B(S)(x)D(S)(x)

⊤∇(S)F (x)

(7) Send (d′
(S)) to the Master
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BD3MG (Worker)





While the Master stopping criterion is not met:

(1) Receive (x,S,d(S)) from Master

(2) Set D(S)(x) = [−∇(S)F (x) | d(S)]

(3) Compute A(S)(x) and ∇(S)F (x)

(4) B(S)(x) = (D(S)(x)
⊤A(S)(x)D(S)(x))

†

(6) d′
(S) = −D(S)(x)B(S)(x)D(S)(x)

⊤∇(S)F (x)

(7) Send (d′
(S)) to the Master

◮ By construction, there is no overlap in the coordinates updated

by the workers at a given time, i.e. (∀k ∈ N)
⋂

c∈[[1,C]]

Sk
c = ∅.

◮ Assuming no delay (i.e. the worker returns immediately his

feedback to the master), BD3MG becomes equivalent to the

aforementioned block alternating 3MG method.
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Modeling the latency effects

Asynchronous algorithm: No locking condition between workers,

thus latency may appear in local variables, that must be modeled for

analyzing the convergence of the algorithm.

◮ Each local entry xi used by a worker to perform its update at

time k belongs to a past element x
k′

i

i of the sequence {xk}k∈N

with k′i = max{k′ ∈ [[0, k]] | i ∈ Sk′}.

◮ We define δk,n = k − k′n ∈ [[0, k]], the delay at a coordinate

n ∈ [[1, N ]] and δk = (δk,n)n∈[[1,N ]] the complete vector of delays.

◮ The majorizing property leads, for every k ∈ N, for every

c ∈ [[1, C]],

F (xk+1) 6 Q(Sk
c )
(xk+1

(Sk
c )
,xk,δk) 6 Q(Sk

c )
(xk,δk

(Sk
c )
,xk,δk) = F (xk,δk).

with xk,δk = (x
k−δk,n

n )n∈[[1,N ]].



Introduction 3MG Algorithm Block Distributed 3MG Algorithm Experimental results Conclusion

SFO:14-10-2020 18/28

Convergence theorem [Chalvidal et al., 2020]

Let assume that:

1. F : RN → R is L-Lipschitz differentiable, bounded from

below and semi-algebraic.

2. (bounded delay) There exists τ ∈ N such that for every

k ∈ N, we have [[1, N ]] ⊂
k⋃

i=k−τ

Si, with the convention

∀ l ∈ N
∗, S−l = ∅.

3. (bounded majorant error) There exists (ν, ν) > 0 such that,

for every k ∈ N, for every c ∈ [[1, C]],
(L

√
τ + ν) Id � Γ

k
c � ν Id, with, for every k ∈ N, c ∈ [[1, C]],

Γ
k
c = A(Sk

c )
(xk,δk)− 1

2A(Sk
c )
(xk).

Then, the sequence (xk)k∈N built by BD3MG algorithm is of finite

length and converges to a critical point of F .
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Control of information sharing

In practice, it is usually not necessary to send the full vector x to

the core working on the update of a given block S.

If F (x) =
∑S

s=1 fs(Lsx), then A(x) =
∑S

s=1 Ls
⊤Diag {ωs(Lsx)}Ls,

with ωs : R
Ps → R

Ps a smooth positive valued mapping.

◮ The update of block S only requires sharing xi with i in

N (S) =

S⋃

s=1

{
n ∈ {1, . . . , N}|(∃p ∈ P(S)

s ) [Ls]p,n 6= 0
}
,

where P(S)
s = {p ∈ {1, . . . , Ps} |(∃j ∈ S) [Ls]p,j 6= 0}

∗ For sparse (Ls)16s6S , the cardinality of N (S) can be very small with

respect to N .

Examples: discrete gradient operators, convolution operators with

small kernels.
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Application to 3D image

deconvolution
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Problem statement

➜ ➜

Original 3D image Degradations Measured 3D image

x ∈ R
N H ∈ R

N×N , b ∈ R
N y = Hx+ b

◮H: 3D convolution operator representing depth-variant 3D

Gaussian blurs. For each depth z ∈ {1, . . . , NZ}, different

variance and rotation parameters.

◮ b: additive Gaussian i.i.d. zero-mean noise.
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Variational approach

(∀x ∈ R
N ) F (x) =

1

2
‖Hx− y‖2 +R(x)

OBJECTIVE FUNCTION

 Hybrid penalization term R = R1 +R2 +R3:

◮ R1(x) = η
∑N

n=1 d
2
[xmin,xmax]

(xn)

◮ R2(x) = λ
∑N

n=1

√
([V Xx]n)

2
+ ([V Yx]n)

2
+ δ2

◮ R3(x) = κ
∑N

n=1([V
Zx]n)

2

• (η, λ, δ, κ) ∈ (0,+∞)4: regularization parameters;

• [xmin, xmax]: range of pixel intensity values; dC : distance to set C;

• V
X,V Y,V Z

∈ R
N×N : discrete gradients along X,Y and Z.
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Restoration results

Comparison between original (left), degraded (middle) and restored (right) slices
(z = 10) of FlyBrain (N = 256× 256× 24 degraded by 11× 11× 21 blurs) and

Aneurysm (N = 155× 154× 79 degraded by 5× 5× 11 blurs).
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Ablation study

◮ Comparison of BD3MG with four parallel/distributed

optimization algorithms, obtained by removing some/all

acceleration features of our algorithm:

Name Asynchrony Memory MM scaling

Async-GD [Niu et al., 2011] ✓ ✗ ✗

Async-CG ✓ ✓ ✗

Async-MM ✓ ✗ ✓

BP3MG [Cadoni et al., 2016] ✗ ✓ ✓

BD3MG ✓ ✓ ✓
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Ablation study

Evolution of SNR in dB (left) and relative distance to solution ‖xk − x∗‖/‖x∗‖ (right)
along time (in seconds) for FlyBrain restoration. Intel Xeon(R) W-2135 CPU with 12

cores clocked at 3.70GHz.
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Linear speedup

Speed-up ratio for BD3MG (blue) and BP3MG (red), with respect to the number of
active cores for the restoration of Aneurysm. Intel Xeon CPU 6148 with up to 80

physical cores at 2.4 GHz (Skylake) and 1.5 Tio of RAM.
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Conclusion

The Block Distributed Majorize-Minimize Memory Gradient

(BD3MG) Algorithm handles non convex smooth optimization

problems of very large dimension.

X Reduced complexity / memory requirement.

X Convergence assessed under mild assumptions.

X High efficiency in the context of 3D image restoration.

https://github.com/mathieuchal/BD3MG
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