### Optimization with inexact gradient and function

Serge Gratton with E. Simon, D. Titley-Peloquin and P. Toint

University of Toulouse and IRIT, France

ANITI (serge.gratton@toulouse-inp.fr )

SFO, November 2020

#### Thanks

- 3IA Artificial and Natural Intelligence Toulouse Institute
- CIMI, Institut National Polytechnique, Toulouse, France (ANR-11-IDEX-0002-02)

#### Outline for section 1

- Introduction
- - Convergence analysis
  - Numerical experiments



#### Why multiprecision?

#### Paraphrasing [Higham, 2017]:

- Variable precision is becoming more and more accessible in hardware and software.
- Using lower precision can drastically reduce computational running time (e.g. IEEE single up to 14 times faster than IEEE double).
- Our challenge is to better understand the accuracy of algorithms in low precision.



#### Why multiprecision?

#### Paraphrasing [Higham, 2017]:

- Variable precision is becoming more and more accessible in hardware and software.
- Using lower precision can drastically reduce computational running time (e.g. IEEE single up to 14 times faster than IEEE double).
- Our challenge is to better understand the accuracy of algorithms in low precision.

How does multiprecision arithmetic affect the convergence rate and final accuracy of minimization algorithms?



# The (simple?) problem

We consider the unconstrained quadratic optimization (QO) problem:

minimize 
$$q(x) = \frac{1}{2}x^T Ax - b^T x$$

for  $x, b \in \mathbb{R}^n$  and A an  $n \times n$  symmetric positive-definite matrix.

A truly "core" problem in optimization (and linear algebra)

- the simplest nonlinear optimization problem
- subproblem in many methods for general nonlinear unconstrained optimization
- central in linear algebra (including solving elliptic PDEs)



### Working assumptions

For what follows, we assume that

- the problem size n is large enough and A is dense enough to make factorization of A unavailable
- a Krylov iterative method (Conjugate Gradients, FOM) is used
- the cost of running this iterative method is dominated by the products Av

Focus on an optimization point of view: look at decrease in q rather than at decrease in the associated system's residual

ex: ensuring increase in the likelihood in statistics

Our aim, for  $x_*$  solution of QO.

Find  $x_k$  such that  $|q(x_k) - q(x_*)| \le \epsilon |q(x_0) - q(x_*)|$ .



## A first motivating example: weather forecasting (1)

The weakly-constrained 4D-Var formulation (See [Y. Tremolet 2006, 2007,...])

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \|\mathbf{x}_{0} - \mathbf{x}_{b}\|_{B^{-1}}^{2} + \frac{1}{2} \sum_{j=0}^{N} \|\mathcal{H}_{j}(\mathbf{x}_{j}) - \mathbf{y}_{j}\|_{R_{j}^{-1}}^{2} + \frac{1}{2} \sum_{j=1}^{N} \|\underline{\mathbf{x}_{j}} - \mathcal{M}_{j}(\mathbf{x}_{j-1})\|_{Q_{j}^{-1}}^{2}$$

- $\mathbf{x} = (x_0, \dots, x_N)^T$  is the state control variable (with  $x_j = x(t_j)$ )
- $x_b$  is the background given at the initial time  $(t_0)$ .
- $y_j \in \mathbb{R}^{m_j}$  is the observation vector over a given time interval
- $\mathcal{H}_i$  maps the state vector  $x_i$  from model space to observation space
- $\mathcal{M}_j$  is an integration of the numerical model from time  $t_{j-1}$  to  $t_j$
- B,  $R_j$  and  $Q_j$  are the covariance matrices of background, observation and model error. B and  $Q_j$  impractical to "invert"

### A first motivating example: weather forecasting (2)

Solve by a Gauss-Newton method whose subproblem (at iteration k) is

$$\left\| \min_{\delta x} \frac{1}{2} \| \delta x_0 - b^{(k)} \|_{\mathbf{B}^{-1}}^2 + \frac{1}{2} \sum_{j=0}^{N} \left\| H_j^{(k)} \delta x_j - d_j^{(k)} \right\|_{\mathbf{R}_j^{-1}}^2 + \frac{1}{2} \sum_{j=1}^{N} \left\| \underbrace{\delta x_j - M_j^{(k)} \delta x_{j-1}}_{\delta q_j} - c_j^{(k)} \right\|_{\mathbf{Q}_j^{-1}}^2 \right\|_{\mathbf{Q}_j^{-1}}^2$$

- $\delta x$  is the increment in x.
- The vectors  $b^{(k)}$ ,  $c_i^{(k)}$  and  $d_i^{(k)}$  are defined by

$$b^{(k)} = x_b - x_0^{(k)}, \quad c_j^{(k)} = q_j^{(k)}, \quad d_j^{(k)} = \mathcal{H}_j(x_j^{(k)}) - y_j$$

and are calculated at the outer loop.



## A first motivating example: weather forecasting (3)

#### Can be rewritten as

$$\min_{\delta x} \ q_{\text{st}} = \frac{1}{2} \| L \delta x - b \|_{D^{-1}}^2 + \frac{1}{2} \| H \delta x - d \|_{R^{-1}}^2$$

where

• 
$$L = \begin{pmatrix} I & & & & & & \\ -M_1 & I & & & & & \\ & -M_2 & I & & & & \\ & & & \ddots & \ddots & \\ & & & -M_N & I \end{pmatrix}$$

- $d = (d_0, d_1, \dots, d_N)^T$  and  $b = (b, c_1, \dots, c_N)^T$
- $H = diag(H_0, H_1, ..., H_N)$
- $D = diag(B, Q_1, ..., Q_N)$  and  $R = diag(R_0, R_1, ..., R_N)$



### A first motivating example: weather forecasting (3)

$$\min_{\delta x} q_{\text{st}} = \frac{1}{2} \| L \delta x - b \|_{D^{-1}}^2 + \frac{1}{2} \| H \delta x - d \|_{R^{-1}}^2$$

This is a standard QO, but **HUGE!** Note that

$$\nabla^2 q_{\mathrm{st}} = L^T D^{-1} L + H^T R^{-1} H$$

In addition  $D^{-1} = \operatorname{diag}(B^{-1}, Q_1^{-1}, \dots, Q_N^{-1})$  is unavailable!

Thus  $\nabla^2 q_{st} \overline{v}$  (a Hessian times vector product) must be computed by

- $\bullet$  w = Lv,
- solve Dz = w using some (preconditioned) Krylov method
- $v = L^T z + H^T R^{-1} H v$



## A second motivating example: variable precision arithmetic

Next barrier in hyper computing: energy dissipation!

Heat production is proportional to chip surface, hence

energy output  $\approx$  ( number of digits used )<sup>2</sup>

Architectural trend: use multiprecision arithmetic

- graphical processing units (GPUs)
- hierarchy of specialized CPUs (double, single, half, ...)

How to use this hierarchy optimally for fully accurate results?

### Outline for section 2

- Introduction
- Quadratic case
- Smooth non-convex case
  - Convergence analysis
  - Numerical experiments
- 4 Conclusions and perspectives



# Inaccuracy frameworks

#### Our proposal;

Make the Krylov methods for QO more efficient by allowing error on the matrix-vector product (the dominant computation)

#### Two frameworks of interest:

- Continuous accuracy levels
   ex: WC-4D-VAR, where accuracy in the inversion Dz = w can be continuously chosen
- Discrete accuracy levels
   ex: double-single-half precision arithmetic

#### Considered here:

- Full orthonormalisation method (FOM)
- Conjugate Gradients (CG)

with (wlog)  $x_0 = 0$  and  $q(x_0) = 0$ .



### A central equality

Define  $r(x) \stackrel{\text{def}}{=} Ax - b = \nabla q(x)$  and  $Ax_* = b$ .

$$q(x) - q(x_*) = \frac{1}{2} ||r(x)||_{A^{-1}}^2$$

$$\frac{1}{2} \| r(x) \|_{A^{-1}}^{2} = \frac{1}{2} (Ax - b)^{T} A^{-1} (Ax - b) 
= \frac{1}{2} (x - x_{*})^{T} A (x - x_{*}) 
= \frac{1}{2} (x^{T} Ax - 2x^{T} Ax_{*} + x_{*}^{T} Ax_{*}) 
= q(x) - q(x_{*})$$

Hence

Decrease in q can be monitored by considering the  $A^{-1}$  norm of its gradient

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

### The primal-dual norm

 $\Rightarrow$  natural to consider the inaccuracy on the product Av by measuring the backward error

$$||E||_{A^{-1},A} \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{||Ex||_{A^{-1}}}{||x||_A} = ||A^{-1/2}EA^{-1/2}||_2$$

(primal-dual norm)

Let A be a symmetric and positive definite matrix and E be any symmetric perturbation. Then, if  $||E||_{A^{-1}A} < 1$ , the matrix A + E is symmetric positive definite.

#### The main idea

Krylov methods reduce the (internally recurred) residual  $r_k$  on successive nested Krylov spaces

- $\Rightarrow$  can expect  $r_k$  to converge to zero
- $\Rightarrow$  keep  $r(x_k) r_k$  small in the appropriate norm

From  $q(x) - q(x_*) = \frac{1}{2} ||r(x)||_{A-1}^2$ ,  $q(x_*) = -\frac{1}{2} ||b||_{A-1}^2$ , and triangular inequality,

For any 
$$r_k$$
, if 
$$\max\left[\|r_k-r(x_k)\|_{A^{-1}},\|r_k\|_{A^{-1}}\right]\leq \frac{\sqrt{\epsilon}}{2}\|b\|_{A^{-1}}$$
 then 
$$|q(x_k)-q(x_*)|\leq \epsilon|q(x_*)|$$

16 / 48

# The inexact Conjugate Gradients algorithm

#### Theoretical inexact CG algorithm

1. Set 
$$x_0 = 0$$
,  $\beta_0 = ||b||_2^2$ ,  $r_0 = -b$  and  $p_0 = r_0$ 

2. For 
$$k=0, 1, \ldots, do$$

$$3. c_k = (A + \underline{E}_k)p_k$$

4. 
$$\alpha_k = \beta_k / p_k^T c_k$$

$$5. x_{k+1} = x_k + \alpha_k p_k$$

6. 
$$r_{k+1} = r_k + \alpha_k c_k$$

7. if  $r_{k+1}$  is small enough then stop

8. 
$$\beta_{k+1} = r_{k+1}^T r_{k+1}$$

9. 
$$p_{k+1} = -r_{k+1} + (\beta_{k+1}/\beta_k)p_k$$

10. EndFor

#### Results for the inexact CG

Let  $\epsilon_{\pi} > 0$  and let  $\phi \in \mathbb{R}^k_+$  such that  $\sum_{j=1}^k \phi_j^{-1} \leq 1$ . Suppose also that, for all  $j \in \{0, \dots, k-1\}$ ,

$$||E_{j}||_{A^{-1},A} \le \omega_{j}^{\text{CG}} \stackrel{\text{def}}{=} \frac{\epsilon_{\pi} ||b||_{A^{-1}} ||p_{j}||_{A}}{\phi_{j+1} ||r_{j}||_{2}^{2} + \epsilon_{\pi} ||b||_{A^{-1}} ||p_{j}||_{A}}$$
(2.1)

Then

$$||r(x_k)-r_k||_{A^{-1}}\leq \epsilon_{\pi} ||b||_{A^{-1}}.$$

Let  $\epsilon > 0$  and suppose that, at iteration k > 0 of the CG algorithm,  $||r_k||_{A^{-1}} < \frac{1}{2}\sqrt{\epsilon} ||b||_{A^{-1}}$ 

and the product error matrices  $E_j$  satisfy (2.1) with  $\epsilon_\pi = \frac{1}{2}\sqrt{\epsilon}$  for some  $\phi \in \mathbb{R}^k$  (as above). Then

$$|q(x_k)-q(x_*)|\leq \epsilon |q(x_*)|$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

# The inexact FOM algorithm

#### Theoretical inexact FOM algorithm

- 1. Set  $\beta = ||b||_2$ , and  $v_1 = [b/\beta]$ ,
- 2. For k=1, 2, ..., do
- 3.  $w_k = (A + E_k)v_k$
- 4. For i = 1, ..., k do
- 5.  $h_{i,k} = v_i^T w_k$
- $6. w_k = w_k h_{i,k} v_i$
- 7. EndFor
- 8.  $h_{k+1,k} = ||w_k||_2$
- 9.  $y_k = H_{\nu}^{-1}(\beta e_1)$
- 10. if  $|h_{k+1,k}e_k^Ty_k|$  is small enough then go to 13
- 11.  $v_{k+1} = w_k/h_{k+1,k}$
- 12. EndFor
- 13.  $x_k = V_k v_k$



#### Results for the inexact FOM

Let  $\epsilon_{\pi} > 0$  and let  $\phi \in \mathbb{R}^k_+$  such that  $\sum_{j=1}^k \phi_j^{-1} \leq 1$ . Suppose also that, for all  $j \in \{1, \ldots, k\}$ ,

$$||E_{j}||_{A^{-1},A} \le \omega_{j}^{\text{FOM}} \stackrel{\text{def}}{=} \min \left[ 1, \frac{\epsilon_{\pi} ||b||_{A^{-1}}}{\phi_{j} ||v_{j}||_{A} ||H_{k}^{-1}||_{2} ||r_{j-1}||_{2}} \right]$$
(2.2)

Then

$$||r(x_k)-r_k||_{A^{-1}}\leq \epsilon_{\pi} ||b||_{A^{-1}}.$$

Let  $\epsilon>0$  and suppose that, at iteration k>0 of the FOM algorithm,  $\|r_k\|_{A^{-1}}<\frac{1}{2}\sqrt{\epsilon}\,\|b\|_{A^{-1}}$ 

and the product error matrices  $E_j$  satisfy (2.2) with  $\epsilon_\pi = \frac{1}{2}\sqrt{\epsilon}$  for some  $\phi \in \mathbb{R}^k$  (as above). Then

$$|q(x_k) - q(x_*)| \leq \epsilon |q(x_*)|$$

- **4**ロト 4個 ト 4巻 ト 4 巻 ト 9 へ 0 へ

# Using the true quantities (1)

Would this work at all if using the true  $||b||_{A^{-1}}$ ,  $||v_j||_A$  and  $||p_j||_A$ ?

#### Consider 6 algorithms:

```
FOM: the standard full-accuracy FOM
```

iFOM: the inexact FOM (with exact bounds, for now)

CG: the standard full-accuracy CG

CGR: the full-accuracy | CG with reorthogonalization

iCG: the inexact CG (with exact bounds, for now)

iCGR: the inexact CGR (with exact bounds, for now)

## Continuous accuracy levels (1)

#### Comparing equivalent numbers of full accuracy products:

- Assume obtaining full accuracy is a linearly convergent process of rate  $\rho$ (realistic for our weather prediction data assimilation example)
- Cost of an  $\epsilon$ -accurate solution:

$$\frac{\log(\epsilon)}{\log(\rho)}$$

⇒ sum these values during computing and compare them.

# Continuous accuracy levels (2)

#### Compare on:

- synthetic matrices of size  $1000 \times 1000$  with varying conditioning (from  $10^1$  to  $10^8$ ) and log-linearly spaced eigenvalues
- "real" matrices from the NIST Matrix Market
- use different levels of final accuracy  $(\epsilon=10^{-3},\ 10^{-5})$

Note that

Continuous accuracy levels



# Continuous accuracy levels (3)

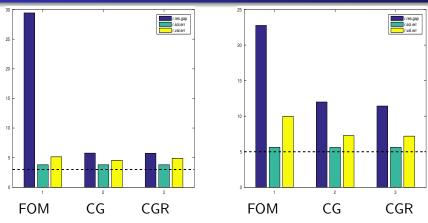


Figure: Exact bounds,  $\kappa(A) = 10^1$ ,  $\epsilon = 10^{-3}$  (left),  $\kappa(A) = 10^5$ ,  $\epsilon = 10^{-5}$  (right); continuous case

Want blue (gap) and green (stopping criterion error on the quadratic) not worse than epsilon, and yellow (approximate error on the quadratic) close

# Multiprecision (1)

Focus on multiprecision arithmetic . Assume

- 3 levels of accuracy (double, single, half)
- a ratio of 4 in efficiency when moving from one level to the next

Use the sames matrices and final accuracies as above.

# Multiprecision (2)

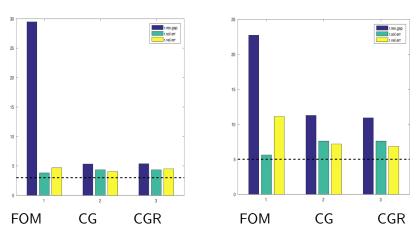
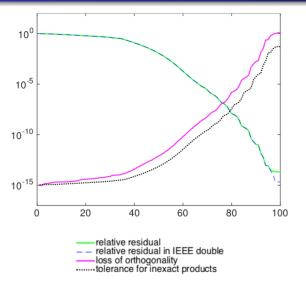


Figure: Exact bounds,  $\kappa(A)=10^1$ ,  $\epsilon=10^{-3}$  (left),  $\kappa(A)=10^5$ ,  $\epsilon=10^{-5}$  (right); discontinuous case

40 > 40 > 42 > 42 > 2 > 900

## An beyond: inexact scalar products



Just relax!



## Perfect in theory but...

- The primal-dual norm  $||E_i||_{A^{-1},A}$  is sometimes difficult to evaluate
- The error bounds remain unfortunately hard to estimate (they involve  $||b||_{A^{-1}}$ ,  $||v_i||_A$  or  $||p_i||_A$ , which cannot be computed readily in the course of the FOM or CG algorithm).
- The termination test  $||r_k||_{A^{-1}} \leq \frac{1}{2}\sqrt{\epsilon} ||b||_{A^{-1}}$  also involves the unavailable  $||r_k||_{A^{-1}}$

#### Give up? Not quite...

• the FOM error bound allows a growth of the error in  $||r_i||^{-1}$  while CG allows a growth of the order of  $||r_i||^{-2}||p_i||_A$  instead.



## Adhoc approximations

Abandon theoretical but unavailable quantities  $\rightarrow$  approximate them:

- $||E||_{A^{-1}A} \ge \lambda_{\min}(A)^{-1}||E||_2$
- $\|p\|_A \approx \sqrt{\frac{1}{n}} \operatorname{Tr}(A) \|p\|_2$ (ok for p with random independent components)
- $||b||_{A^{-1}} = \sqrt{2|q(x_*)|} \approx \sqrt{2|q_k|} \approx \sqrt{|b^T x_k|}$
- $||H_k^{-1}|| = \frac{1}{\lambda_{\min}(H_k)} \le \frac{1}{\lambda_{\min}(A)}$  (FOM only)
- $k_{\text{max}} \approx \frac{\log(\epsilon)}{\log(\rho)}$  with  $\rho \stackrel{\text{def}}{=} \frac{\sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}-1}}{\sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}+1}}$

Termination test (Arioli & Gratton):

$$q_{k-d} - q_k \le \frac{1}{4} \epsilon |q_k|$$

for some stabilization delay d (e.g. 10)



# Does it still work (continuous accuracy levels)?

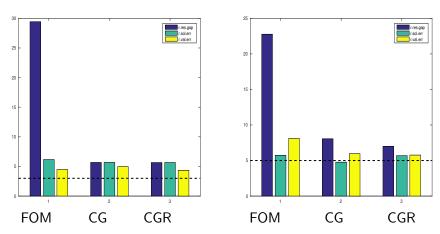


Figure: Exact bounds,  $\kappa(A)=10^1$ ,  $\epsilon=10^{-3}$  (left),  $\kappa(A)=10^5$ ,  $\epsilon=10^{-5}$  (right); continuous case

4 D > 4 P > 4 E > 4 E > E = 900

# Does it still work (multiprecision)?

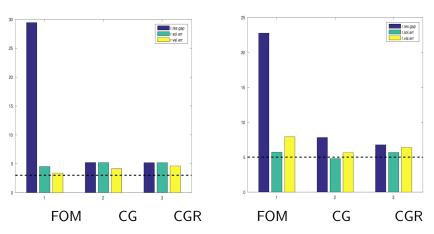


Figure: Approximate bounds,  $\kappa(A)=10^1$ ,  $\epsilon=10^{-3}$  (left),  $\kappa(A)=10^5$ ,  $\epsilon=10^{-5}$ (right); multiprecision

### Outline for section 3

- Introduction
- Quadratic case
- Smooth non-convex case
  - Convergence analysis
  - Numerical experiments
- 4 Conclusions and perspectives

#### Consider

$$\min_{x \in \mathbb{R}^n} f(x)$$
.

The dynamic accuracy setting of trust-region methods [CGT 2000], it is assumed that

• The value of the objective can be approximated with a prespecified level of accuracy  $\omega_f$ :

$$|\overline{f}(x,\omega_f)-\overline{f}(x,0)|\leq \omega_f$$
 and  $\overline{f}(x,0)=f(x)$ 

• Following [Carter 1993; G., L.N Vicente and Z. Zhang 2020], the case where the gradient is inexact can be handled:

$$\|\overline{g}(x,\omega_g) - \overline{g}(x,0)\| \le \omega_g \|\overline{g}(x,\omega_g)\|$$
 and  $\overline{g}(x,0) = \nabla_x^1 f(x)$ 

We recall that the convergence at step k

$$\|\nabla_x^1 f(x_k)\| \leq \|\overline{g}(x_k, \omega_{g,k})\| + \|\overline{g}(x_k, \omega_{g,k}) - \overline{g}(x, 0)\| \leq \epsilon.$$

is gained provided, for some constant  $\kappa_{\rm g}$ ,  $\omega_{\rm g,k} \leq \kappa_{\rm g}$  and

$$\|\overline{g}(x_k,\omega_{g,k})\| \leq \frac{\epsilon}{1+\kappa_g}.$$

#### TR with dynamic accuracy on f and g (algo TR1DA) (Step computation)

- Step 1 Check for termination. If k=0 or  $x_k \neq x_{k-1}$ , choose  $\omega_{\mathbf{g},k} \in (0,\kappa_{\mathbf{g}}]$  and compute  $\overline{g}_k = \overline{g}(x_k,\omega_{\mathbf{g},k})$  such that  $\|\overline{g}(x_k,\omega_{\mathbf{g},k}) \overline{g}(x_k,0)\| \leq \omega_{\mathbf{g},k}\|\overline{g}(x,\omega_{\mathbf{g},k})\|$ . Terminate if  $\|\overline{g}(x_k,\omega_{\mathbf{g},k})\| \leq \frac{\epsilon}{1+\kappa_{\mathbf{g}}}$ .
- Step 2 Step calculation. Sufficiently reduce the model  $m(x_k,s) = f_k + \overline{g}_k^T s + \frac{1}{2} s^T H_k s$  in the Trust-Region  $\{s_k, \|s_k\| \leq \Delta_k\}$  in the sense that

$$m(x_k,0)-m(x_k,s_k)\geq \frac{1}{2}\|\overline{g}_k\|\min\left[\frac{\|\overline{g}_k\|}{\|H_k\|},\Delta_k\right]$$

Step 3 Evaluate the objective function. Select  $\omega_{f,k}^+ \in \left(0, \eta_0[m(x_k,0)-m(x_k,s_k)]\right] \text{ and compute}$   $f_k^+ = \overline{f}(x_k+s_k,\omega_{f,k}^+). \text{ If } \omega_{f,k}^+ < \omega_{f,k}, \text{ recompute } f_k = \overline{f}(x_k,\omega_{f,k}^+).$ 

#### TR with dynamic accuracy on f and g (TR1DA) (Step acceptance)

Step 4 Acceptance of the trial point. Define the ratio

$$\rho_k = \frac{f_k - f_k^+}{m(x_k, 0) - m(x_k, s_k)}.$$

If  $\rho_k \ge \eta_1$ , then define  $x_{k+1} = x_k + s_k$  and set  $\omega_{f,k+1} = \omega_{f,k}^+$ . Otherwise set  $x_{k+1} = x_k$ ,  $\omega_{f,k+1} = \omega_{f,k}$  and  $\omega_{g,k+1} = \omega_{g,k}$ .

Step 5 Standard trust-radius update.

Set

$$\Delta_{k+1} \in \begin{cases} [\Delta_k, \infty) & \text{if } \rho_k \ge \eta_2, \\ [\gamma_2 \Delta_k, \Delta_k) & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\gamma_1 \Delta_k, \gamma_2 \Delta_k] & \text{if } \rho_k < \eta_1. \end{cases} \downarrow$$

Increment k by 1 and go to Step 2.

### **Assumptions**

- AS.1: The objective function f is twice continuously differentiable in  $\mathbb{R}^n$  and there exist a constant  $\kappa_{\nabla} > 0$  such that  $\|\nabla^2_{\mathbf{x}}f(\mathbf{x})\| \leq \kappa_{\nabla}$  for all  $\mathbf{x} \in \mathbb{R}^n$ .
- AS.2: There exists a constant  $\kappa_H \geq 0$  such that  $||H_k|| \leq \kappa_H$  for all k > 0.
- AS.3 There exists a constant  $\kappa_{low}$  such that  $f(x) \geq \kappa_{low}$  for all  $x \in \mathbb{R}^n$ .

We can bound the accuracy on the model w.r.t the exact function:

Suppose AS.1 and AS.2 hold. Then, for each k > 0,

$$|f(x_k + s_k) - m(x_k, s_k)| \le |f_k - f(x_k)| + \kappa_g ||\overline{g}(x_k, \omega_{g,k})|| \Delta_k + \kappa_{H\nabla} \Delta_k^2$$

for  $\kappa_{H\nabla} = 1 + \max[\kappa_H, \kappa_{\nabla}]$ .

The observed  $\rho$  can be interpreted as a true function versus model reduction

We have that, for all k > 0.  $\max \left[ |f_k - f(x_k)|, |f_k^+ - f(x_k + s_k)| \right] \le \eta_0 \left[ m(x_k, 0) - m(x_k, s_k) \right]$ and  $\rho_k \ge \eta_1$  implies that  $\frac{f(x_k) - f(x_k + s_k)}{m(x_k, 0) - m(x_k, s_k)} \ge \eta_1 - 2\eta_0 > 0.$ 

Proof. This follows from the accuracy management and from

$$\rho_k = \frac{f_k - f_k^+}{m(x_k, 0) - m(x_k, s_k)} = \frac{f(x_k) - f(x_k + s_k)}{m(x_k, 0) - m(x_k, s_k)} + \frac{[f_k - f(x_k)] + [|f_k^+ - f(x_k + s_k)]}{m(x_k, 0) - m(x_k, s_k)}$$





Suppose AS.1 and AS.2 hold, and that  $\overline{g}(x_k, \omega_{g,k}) \neq 0$ . Then

$$\Delta_k \leq \frac{\|\overline{g}(\mathbf{x}_k, \omega_{g,k})\|}{2\kappa_{H\nabla}} \Big[\tfrac{1}{2}(1-\eta_1) - \eta_0 - \kappa_g \Big] \ \text{ implies that } \ \Delta_{k+1} \geq \Delta_k.$$

#### Proof.

$$|\rho_{k} - 1| \leq \frac{|f_{k}^{+} - f(x_{k} + s_{k})| + |f(x_{k} + s_{k}) - m(x_{k}, s_{k})|}{m(x_{k}, 0) - m(x_{k}, s_{k})}$$

$$\leq 2\eta_{0} + \frac{\kappa_{g} \|\overline{g}(x_{k}, \omega_{g,k})\| \Delta_{k} + \kappa_{H\nabla} \Delta_{k}^{2}}{\frac{1}{2} \|\overline{g}(x_{k}, \omega_{g,k})\| \Delta_{k}}$$

$$\leq 2\eta_{0} + 2\kappa_{g} + 2\kappa_{H\nabla} \frac{\Delta_{k}}{\|\overline{g}(x_{k}, \omega_{g,k})\|}$$

$$\leq 1 - \eta_{2}$$

where we used  $\eta_0 + \kappa_g < \frac{1}{2}(1 - \eta_2)$ .

4 D F 4 D F 4 D F 9 0 C

Suppose  $\Delta_0 \geq \theta \epsilon$ . The TR1DA algorithm produces an iterate  $x_k$  such that  $\|\nabla_x^1 f(x_k)\| \leq \epsilon$  in at most  $\tau_S \stackrel{\text{def}}{=} \frac{2(f(x_0) - \kappa_{\text{low}})(1 + \kappa_g)}{(n_1 - 2n_0)\theta} \cdot \frac{1}{\epsilon^2}$ 

$$\tau_{\text{tot}} \stackrel{\text{def}}{=} \tau_{S} \left( 1 - \frac{\log \gamma_{3}}{\log \gamma_{2}} \right) + \frac{1}{|\log \gamma_{2}|} \log \left( \frac{\Delta_{0}}{\theta \epsilon} \right)$$
(3.3)

iterations in total.

successful iterations, and at most

#### Proof.

$$\begin{split} f(x_0) - \kappa_{\mathrm{low}} & \geq & \sum_{j \in \mathcal{S}_k} \left[ f(x_j) - f(x_{j+1}) \right] \\ & \geq & \frac{1}{2} (\eta_1 - 2\eta_0) \sum_{j \in \mathcal{S}_k} \|\overline{g}(x_j, \omega_{g,j})\| \min \left[ \frac{\|\overline{g}(x_j, \omega_{g,j})\|}{1 + \|H_j\|}, \Delta_j \right] \\ & \geq & \frac{1}{2} |\mathcal{S}_k| (\eta_1 - 2\eta_0) \frac{\epsilon}{1 + \kappa_g} \min \left[ \frac{\epsilon}{\kappa_{H\nabla} (1 + \kappa_g)}, \min \left[ \Delta_0, \theta \epsilon \right] \right] \\ & = & |\mathcal{S}_k| \frac{(\eta_1 - 2\eta_0)}{2(1 + \kappa_g)} \min \left[ \frac{1}{\kappa_{H\nabla} (1 + \kappa_g)}, \theta \right] \epsilon^2 \end{split}$$

Serge Gratton (INP-IRIT, Toulouse, France)

## Practical setting

#### In our numerical experiments with TR1DA

- We perfom 20 runs on 86 Cuter problems
- We assume that the objective function's value  $\overline{f}(x_k,\omega_k)$  and the gradient  $\overline{g}(x_k,\omega_k)$  can be computed with corresponding accuracy level equal to machine precision, half machine precision or quarter machine precision
- The computational cost of an operation is devided by 4 when passing from one level to the immediate next one: half precision corresponds to double-precision costs divided by 16
- Hessian approximation are obtained with a limited-memory symmetric rank-one (SR1) quasi-Newton update

### Practical setting

To set the stage, our first experiment starts by comparing three variants of the TR1DA algorithm:

- LMQN: a version using  $\omega_f = \omega_g = 0$  for all k (i.e. using the full double precision arithmetic throughout),
- LMQN-s: a version using single precision evaluation of the objective function and gradient for all k,
- LMQN-h: a version using half precision evaluation of the objective function and gradient for all k.

Simple minded approach: expensive parts of the optimization calculation conducted in reduced precision no further adaptive accuracy management.

# Simple approach

|            |         |       |       |       |       | relative to LiviQiV |       |       |
|------------|---------|-------|-------|-------|-------|---------------------|-------|-------|
| $\epsilon$ | Variant | nsucc | its.  | costf | costg | its.                | costf | costg |
| 1e-03      | LMQN    | 82    | 41.05 | 42.04 | 42.04 |                     |       |       |
|            | LMQN-s  | 78    | 41.40 | 42.60 | 42.60 | 1.03                | 1.04  | 1.04  |
|            | LMQN-h  | 22    | 16.95 | 1.12  | 1.12  | 0.97                | 0.06  | 0.06  |
| 1e-05      | LMQN    | 80    | 46.34 | 47.38 | 47.38 |                     |       |       |
|            | LMQN-s  | 48    | 47.79 | 48.96 | 48.96 | 1.08                | 1.08  | 1.08  |
|            | LMQN-h  | 10    | 17.80 | 1.18  | 1.18  | 1.38                | 0.08  | 0.08  |
| 1e-07      | LMQN    | 67    | 62.76 | 63.85 | 63.85 |                     |       |       |
|            | LMQN-s  | 25    | 28.28 | 28.96 | 28.96 | 0.82                | 0.81  | 0.81  |
|            | LMQN-h  | 6     | 15.83 | 1.05  | 1.05  | 0.97                | 0.06  | 0.06  |

Table: Results for LMQN-s and LMQN-h compared to LMQN

- Quickly decreasing robustness when a tight accuracy is demanded
- In most cases, no improvement, in costf and costg
- When LMQN-h happens to succeed its cost is very low.

relative to LMON

42 / 48

#### Two variant of TR1DA

- LMQN: as above,
- iLMQN-a: a variant of the TR1DA algorithm where

$$\omega_{f,k} = \min\left[\frac{1}{10}, \frac{4}{100}\eta_1\left(m_k(0) - m_k(s_k)\right)\right] \quad \text{and} \quad \omega_{g,k} = \frac{1}{2}\kappa_g.$$

• iLMQN-b: a variant of the TR1DA algorithm where,

$$\omega_{f,k} = \min\left[\frac{1}{10}, \frac{4}{100}\eta_1\left(\frac{m_k(0) - m_k(s_k)}{m_k(0)}\right)\right] \quad \text{and} \quad \omega_{g,k} = \min\left[\kappa_g, \omega_{f,k}\right].$$

# Variable precision approach

relative to LMQN

|            |         |       |       |       |       | _    |       | •     |
|------------|---------|-------|-------|-------|-------|------|-------|-------|
| $\epsilon$ | Variant | nsucc | its.  | costf | costg | its. | costf | costg |
| 1e-03      | LMQN    | 82    | 41.05 | 42.04 | 42.04 |      |       |       |
|            | iLMQN-a | 80    | 50.05 | 9.88  | 6.11  | 1.23 | 0.24  | 0.15  |
|            | iLMQN-b | 76    | 52.67 | 13.85 | 3.34  | 1.36 | 0.35  | 0.08  |
| 1e-05      | LMQN    | 80    | 46.34 | 47.38 | 47.38 |      |       |       |
|            | iLMQN-a | 75    | 75.92 | 36.21 | 24.77 | 1.40 | 0.63  | 0.42  |
|            | iLMQN-b | 63    | 72.57 | 39.85 | 4.60  | 1.78 | 0.95  | 0.11  |
| 1e-07      | LMQN    | 67    | 62.76 | 63.85 | 63.85 |      |       |       |
|            | iLMQN-a | 47    | 65.83 | 58.97 | 37.50 | 1.18 | 1.03  | 0.65  |
|            | iLMQN-b | 40    | 87.35 | 95.09 | 5.52  | 1.39 | 1.45  | 0.09  |

Table: Results for the variable-precision variants

# Summary of the experiments

- For  $\epsilon=10^{-3}$  or  $10^{-5}$ , inexact variants iLMQN-a and iLMQN-b perform well in cost for gradient and function
- iLMQN-a appears to dominate iLMQN-b in the evaluation of the objective function
- iLMQN-b shows significantly larger savings in the gradient evaluation costs
- When the final accuracy is tigther inexact methods appear to loose their edge in robustness. Gains in function evaluation costs disappear
- Comparison of iLMQN-a and even iLMQN-b with LMQN-s and LMQN-h clearly favours the new methods

### Outline for section 4

- Introduction
- Quadratic case
- Smooth non-convex case
  - Convergence analysis
  - Numerical experiments
- 4 Conclusions and perspectives

# Conclusions and perspectives

#### Summary:

- Optimization-focused theory to handle inexact function/gradient evaluation
- Theoretical gains substantial
- Translates well to practice after approximations

#### Perspectives:

- More general (controlable) inexactness in constrained optimization
- Probabilistic error specification

Thank your for your attention!

#### Reference

- S. Gratton, E. Simon, Ph. L. Toint,
   Minimizing convex quadratics with variable precision Krylov methods, arXiv:1807.07476, NLAA in press
- S. Gratton, Ph. L. Toint,
   A note on solving nonlinear optimization problems in variable precision,
   arXiv:1812.03467, COAP, 2020
- S. Gratton, E. Simon, Ph. L. Toint,
   Minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity, arXiv:1807.07476, Mathematical Programming, 2020