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Controlling a large number of electric flexibilities

Actors @ Central actor:
aggregator, TSO,
producer/provider,

@ Local flexibilities:
generation, storage or
flexible consumption
(AC, heating, fridge,
water-heater, etc.),...

Goal Optimize the Global
Criteria while

@ satisfying flexibilities
technical constraints

min { I‘}y‘Z!! ) + Z/“,W ) }
i=1 i=1

Aggregative Additive

@ preserving Quality of
Service of devices

global cost local costs

@ preserving privacy of
consumers (individual

““\‘ consumption or
NS constraints) o
@ @ limiting computing «w
time and eRODDF

communications
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Aggregative global cost + additive local costs

Problem Control the aggregate of generation/consumption provided by a
population of flexibilities s =1, -- ,n in order to

V’[,H;%IEIM;{ Fo(;ui) + Zl:ZIFi(ui) }

——— —
Aggregative Additive
global cost local costs

Aggregative global cost
n n

oFo(Z Ui) = d(’l‘, Zuz) tracking a target profile (’I‘t)t:]y.u T s M
i=1 1=1

n
Balancing cost (generation +market position) to satisfy the
.FO(Z ’lli) =

— inflexible demand and flexible demand d + Z:Ll u; at lowest cost
1= T

Local features must be kept private
e local costs F;

e local constraints: admissible sets, /;
> -

e Uncertainties may impact local agents eDF
ROD

e Large number of agents: > 103,--- or even > 10°
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A high dimensional stochastic control problem (1/2)

Problem Control the consumption of a population of flexibilities

i =1,---,nin order to conciliate local costs with a global cost:
inf J
A
(P1) I~ ;0 1 i
J(u) :=E FO(E ;'UV) + " ;Fi(u’,X”“ ) |-
1= 1=

.....

AXP =ty g, XP)dt + o, XP)AW, for te [0,T],
X! = z) eR (1)

0,u?

where W := (W’i),,jg{l_’”__,,,,} stands for an n dim. Brownian Motion (BM).

- . S~
Example X" := (X" )ie{l,...,n} may represent indoor-temperatures EI;F
of a population of fridges with ON/OFF decisions u; € {0,1}. oo



A high dimensional stochastic control problem (2/2)

Problem Control the consumption of a population of flexibilities

5,70
i=1 i=1

e The set of admissible controls U/ is composed of elements
u=(ul,...,u") €U =Uy X ... x Uy, s.t. forall i € {1,--- ,n}
e u' is a progressively measurable process w.r.t. the large
filtration (]:t)OSth (7é (‘FZ)OStST) where
Fi=o(W,|0<s<t) while F:=c(Wi|0<s<t)
e u' takes bounded values s.t.
uh(w) € [-M;, M;]  for t €[0,T], 0 < M; < oo .

e Example in Dynamic Programming, costs have a specific form of the type_
\
eDF

/ fo(t,v)dt , and Fj(u, X“‘ / filt, ul, “L)dt rep
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Numerical issues / Existing approaches

e A stochastic control problem with challenging numerical issues
@ high dimensional state space (n is big /)
@ high dimensional noise (n s big /) but no common noise
@ continuous time = large number of time steps after discretization

e Existing approaches
@ Random trees [HigleEtall3, RuszczynskiEtal03]
uncertainties are approximated by a random tree, then decomposition methods are
implemented [RockafellarEtal91, Salinger97].
But limited to problems with a small noise space and few time steps.

@ Dynamic Programming [Bertsekas04]
» requires Markov property of the system and a specific structure of costs
functions.
» curse of (state space) dimensionality limits classical approaches up to
dimension 5.
» Stochastic Dual Dynamic Programming (SDDP) [PereiraEtal91]
allows to consider states up to dimension 30, under convex assumptions.

@ Dual Approximate Dynamic Programming (DADP)
[Strugarek06, Girardeaul0, Alaisl3, Leclérel4, CarpentierEtall8]
consists of a price decomposition, where the stochastic constraints are projected
on subspaces s.t. the Lagrangian multiplier is adapted for dynamic programming.
But in general no error bound can be estimated a priori. &'s

A

The present approach follows the same spirit as DADP but provides eagf

an a priori error bound ans relies on an original stochastic algorithm. 8/30
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Three main steps

@ Approximation of the original problem (P,) ~ (P)

n

(Pl) inf J(U,) With J(u) ::E (Fo(iz ZF qu )

uel Py
by the auxiliary problem
Py) inf J ith J(u E( ~E Fy(ut, X
) g i T (130 m00) + e (S )
@ Lagrangian decomposition of (P;) < (P;)
_ 1 n L
J ith J = R “E Fy(uf, Xt
min J(u,v), wi (u,v) o(v)—|—n (Z (u ))

ueU,veY :
i=1

st~ ZE(ui) =v (N
=1

‘a
@ Stochastic approximation version of Uzawa algorithm to ED‘F

solve the dual of (Ps3) o

10/ 30
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Four basic assumptions

Assumption

O Fy ts conver.
For anyie{l,...,n}:
Q u; 0; are Lipschitz w.r.t. space variables and have linear growth.
@ F; has polynomial growth: |F;(u',2")| < K(1 + supg<;<r |2[P).
Q G;: (v,w) e L2(0,T) x C([0,T)) — F;(v, X*"(w)) € R.
1s strictly convex w.r.t. the first variable.

v

Example: Affine dynamics and separable local costs w.r.t. control and
state

wi(t,z,z) = a;i(t)z+ Bi(t)x +v(t),
oi(z,t) = &)z +0i(1),
F(I/,X) = gi(l/)-i-hi(X)
gi : L*(0,T) — R and h; : C[0,T] — R are convex -y
where . ) eDF
g; or h; is strictly convex. 70D
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Approximating (P;) by (P,) — decentralized controls

Proposition (Wellposedness)

Both problems (Py) and (P2) admit a unique solution.

Let u* denote the unique solution of (P;)
and @ the unique solution of (Po).
Let 7' denote the filtration generated by the local noise .

Proposition (Decentralized controls for (Py))

J reaches its minimum over U at a unique point, & € U, such that for
any 4, U' is F'—adapted.

= For any j # 4, @' and @’ are mutually independent. In particular

1 n

n

1 Fia o ~i
i=1 1=1 .
~ . . L
Let U :={u e U|u" is F' — adapted for all i€ {1,...,n}} eDF

min J (u) = min J(u). e
ueZ] ueU 12 /30



Approximating (P;) by (P) : e-optimality

Theorem (e-optimality

o If Fy is Lipschitz with constant -, then @ is an e-optimal
solution of (Py), with e = yM+/T/n.

o If Fy is Gdteaux differentiable with c-Lipschitz derivative,
then @ is an e-optimal solution of (P;) with e = cTM?/n.

Besides J (1) — J(@) > J(@) — J(u*) > 0.

N
e Ideas: 0 < E[Fo( ' Fo(— E[a' < €.
oG - RGBT 2
Jensen i=1 Fy regularity
decentralized @
For any «' € U we have:
~ j= ~ I /
J(a) < J(u) +¢e < Ju)+e < Juw)+e
~—~ ~—~ ~—~ .
Fy regularity optimality of @ Jensen <3
decentralized @ €DF



Lagrangian decomposition of (Ps) < ()

e Strong duality holds for (Ps)

ueU vey

st~ ZE(ui) —v=0 ()
=1

min J(u,v), with J(u,v):= Fy(v)+ E(ZF qu >
(F3)

e The Lagrangian function associated with (P3) is:
LU x L2(0,T) x L*(0,T) — R defined by:

L(u,v,\) := A\, —ZE — V) 12(0.7)- (2)

e The dual problem (D) associated with (P3) is:

(D) )\E%gz%éfT)W()\), where W()) = ue%{l,iglevL(uw’)\)' (3y=

with V= {v € L*(0,T); [v(t)| < 2M, vt € [0,T]}.

ROD
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Uzawa algorithm: from standard to sampled algorithm

e Maximizing the dual function max  W(M),
AEL2(0,T)
. RS 1 = ) |
By ey {F 4 SRR 0 ) —?/>L2<O’T>}-

e Standard Uzawa algorithm given steps (px)r>0 pr > 0,
Update \¥ — A\**1 along dual iterations k — k + 1

v(A\F) € argmin{Fo(v)—<)\"',’U>Lz(0_1->}
ve

ut(\F) = al;%enzjm {E (Fi(u’7 XHuy 4 </\k'eui>L‘2((),T)>}

YOF) = E[%iw(xk)ww)}

p
AL = M Y (AR

e Sampled Uzawa algorithm Y (\¥) — YF+1
k+1 _ vk k41 - -
) A=A+ pY ooF
where YT =y (\F) + "1 with E[*H]=0.

ROD
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A natural choice for random variable Y*

e Along dual iterations ()71, e ,}A/k, .-+ ) are generated independently
e Choose a parameter m € N*
e At iteration k

@ Generate independently from the past [F*1 .= (7LA+HL kel
m i.i.d r.v. uniformly in {1,...,n}

e Compute the strategies (u’l’kﬂ()\’c)7 . 7u’m’k“()\k))

@ Generate independently from the past B**! .= (BLE+L  pmhtl)

m i.i.d BM on [0,T]
e Compute the decisions realization on B**!
1,k+1 3 m,k+1 m.k
(ul F)Y(BLFD), ol (\Y(B ,A+1))

o VR = LSyt ey ity (k)
m

J=1
e One easily check that V"' = Y(\F) 4 7F+1 with

[ §
Er*tG] =0, E[r*?|Gy] < C < oo where Gy, := o ((I?, B )o<p<k) 'EIZFF

- . . . ROD
which constitutes useful properties for proving convergence. . .
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Sampled Uzawa algorithm

Initialization
@ (pr)k st pr>0, Y2 pr=00, > p2q(pr)? < oo
m € N*
kmﬂ.’]} e N*
k=0
A0 e L2(0,T)

While k < k™a®
Q vF=v(N\F) e argergin{Fo(v) — <)\k,v)Lz(07T)}

@ Generate independently also independently with previous r.v. (I?, BP)1<p<k

o J[hHl .= (JLk+1  pmktly ypiid rov. uniformly in {1,...,n}
e Bkt .= (BLA+1  B™:k+1l) miid. BM on [0,T]

@ Compute W (\*) where u*()\) := argmin {E (F%(u’7 X”‘v“i) + (A,ui)Lz(O T>)}
uieb?q; ’
@ Compute the related control realizations
I AN g T okt g k41
(" Y (BIAEY), ™ () (B )

N 1 & Jik+1 .
Yk+1 = I )\k B],k+1 _ )\k s
5] — 3w AR B — o(a) s
Jj=r eDF
e )\k+1 = )\k +Pkyk+1 ROD

@ k+—k+1 17/30



Convergence

Theorem (Sampled Uzawa Algrithm and Decentralized Approach)

Q0 W) —— max W()) a.s.
k—o0 A€L2(0,T)

Q@ {\} — to some X € S := argmaxW()\) in L?(0,T) a.s.
AEL2(0,T)
If Fy is Gateauz diff. with c-Lipschitz derivative, then S = {)\},
o {|\— 5\||%2(0’T)} — 0 a.s.
9 {u(M)} = u(X) = @ := argminJ(u) a.s.
ueU
If moreover Iy s strictly convex, then:

Q J(u(\¥)) — J(@) a.s.

O limsup J(u(A\)) < infyuey J(u) +2(n) a.s. with e(n) = 2¢TM?/n.

k—o0

v

L
Proof results for stochastic approxvimation in Hilbert spaces are sparse = thg

convergence analysis was conducted inspired by [GeiersbachEtall9]. e
18/30
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Thermostatically Controlled Loads (TCLs) providing
Frequency Reserve [TindemansEtall5, BusicEtall6, DePaolaEtall9]

-

Global Criteria

’u‘lliu“ { F“(iu,) + iﬁ(’h) }

im1 i1
L
Aggregative Additive

local costs

global cost

(UTCL ’ R TCL)

e Global cost: Fo(Urcr, Rror)

@ Urcyp: average consumption
profile of TCLs

@ Rpcop: average Frequency
Reserve provided by TCLs

@ Iy = Balancing cost
resulting from an optimization
problem determining generation
scheduling decisions (power
production and Frequency
Reserve (FR)) in order to
minimize the short term
operating cost of the system .
while matching generation and o
(flexible and inflexible) demand.reo
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Thermostatically Controlled Loads (TCLs): state and
control model [kizilkaleEtal16]

e State Xf ut temperature [°C] controlled by its power consumption u}
[W] evolves according

dXZul = —%(Xt“ﬂ — X pp + Guy)dt + o, dW}, for t € [0,T7,
Xi . = zieR,

(4)

where:
@ ~; is its thermal time constant [s].
X pp is the ambient temperature [°C].
¢; is the heat exchange parameter [°C/W].
1
o; s a positive constant [(°C)s?2],

(*]
(]
]
) 1 )
@ W* is a Brownian Motion [s2], independent from W7 for any j # i.
oS

et of admissible controls

G.Q

U; = {v € H; andvi(w) € {0, Pon,} for a.e. (t,w) €[0,T] x Q). ek

ROD
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High dimensional stochastic control problem

® UTCL = %Z?:l ui and RTC‘L = %Z?:l TZ‘( '

U17Xi’ui)
o7 -
(PFCY) { J(w): E(Fo(ﬁzmui, i, X))

B (1500 o filud, XE)ds + (X3 - X))

.,n} and any s € [0,7T]:
o Amount of FR provided by TCL ¢ at time s:

where, for any i € {1,.

. . qu —XZ
ri(u’, X5 (s) 1= w1
Xmax - Xmm

o Individual discomfort of TCL 7 at time s:

Filud, X2") = i (X0 = X2 4 Bi(Xyy — X024 (X2 - X

max) ) -~
i éor
@ Terminal cost imposing periodic behavior, v; (X" — X;)?

ROD
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Simulation parameters [DePaolaEtal19]

e Model parameters
@ T = 24 hours

@ The generation technologies available in the system are
@ nuclear : installed capacity 10GW
e Combined Cycle Gas Turbines (CCGT): installed capacity 25GW
@ Open Cycle Gas Turbines (OCGT): installed capacity 20GW
@ wind: installed capacity 40GW.
@ TCLs Population Size n = 20 x 10°
@ Power consumption Pon,; = 180W, other parameters y; and Xé)FF are taken from [?]
@ (Common) volatility of TCLs temperature dynamics: o; := 0,1,2
e Sampled Uzawa Algorithm parameters
@ m = 317 simulations per iteration of
@ Algorithm is stopped after k"*** = 75 iterations

e Local TCLs sub-problems involve the dual prices (A, p) associated to power and
reserve constraints

T ) )
inf [ fi(ul, X0 ufAl (!, X5 ()l ds,
uteU; Jo
o3
are solved by a finite difference scheme the discretization discretizing the related one €eDF

dimensional HJB equation with time steps At = 7.6 s and temperature steps Af = 0.15°C.**°
23 /30



TCLS Responses and Prices as a function of time (hours)

120

Po=0 Po=1 Po=2
= = Po=0= = Po=1= = Po=2
100 |- —

1,000 |-
80 [~

60 [~

500 |-

20

Power Consumption U (solid lines) (MWh) Power prices (£/MWh) and
and Frequency Response R (doted lines) (MW) Reserve prices (£/MW) O

€DF

ROD
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Generators Power generation and Frequency Response

deviations from Buisness as Usualas a function of time (hours)

2,000

1,000

—1,000

200
—— CCGTy—p CCGTy=1 —— CCGTyog —— CCGTHy—1
CCGTy—0=- = Wind,—o CCGTy—o
- - Windy=1 Winds—o
P 0 A
- ,/ < ~ .
/// T “
} L !
//’ “ p 1 —200
' \] /I ‘
(Y A~
- \/., =
—400
| | | | |
0 2 4 6 0 2 4 6

Dewviation of Power generation
from Buisness as Usual (MWh)

Dewviation of Frequency Response
from Buisness as Usual (MW)

G.Q

A
€DF

ROD
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Minimized system costs in (£)

with or without TCL flexibilities

o= c=1| oc=2
BaU (M£) | 27.70 27.70 27.72
Flex (M£) | 27.19 27.25 27.40
BaU-Flex | —1.9% | —1.6% | —1.2%

L

€DF

ROD
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Thank You !

€DF
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