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Controlling a large number of electric �exibilities

Actors Central actor:
aggregator, TSO,
producer/provider,
. . .
Local �exibilities:
generation, storage or
�exible consumption
(AC, heating, fridge,
water-heater, etc.), . . .

Goal Optimize the Global
Criteria while

satisfying �exibilities
technical constraints

preserving Quality of
Service of devices

preserving privacy of
consumers (individual
consumption or
constraints)

limiting computing
time and
communications
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Aggregative global cost + additive local costs

Problem Control the aggregate of generation/consumption provided by a
population of �exibilities i = 1, · · · , n in order to

min
∀ i, ui∈Ui

{
F0(

n∑
i=1

ui)︸ ︷︷ ︸
Aggregative

global cost

+

n∑
i=1

Fi(ui)︸ ︷︷ ︸
Additive

local costs

}

Aggregative global cost

•F0(

n∑
i=1

ui) := d(r,

n∑
i=1

ui) tracking a target pro�le (rt)t=1,··· ,T ,

•F0(

n∑
i=1

ui) :=

{
Balancing cost (generation +market position) to satisfy the

in�exible demand and �exible demand d+
∑n
i=1 ui at lowest cost

Local features must be kept private

• local costs Fi
• local constraints: admissible sets, Ui
• Uncertainties may impact local agents

• Large number of agents: > 103, · · · or even > 106
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A high dimensional stochastic control problem (1/2)

Problem Control the consumption of a population of �exibilities
i = 1, · · · , n in order to conciliate local costs with a global cost:

(P1)


inf
u∈U

J(u)

J(u) := E

(
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui)

)
.

• the state process Xu := (Xi,ui)i∈{1,...,n} models the state of a
population of �exibilities evolving randomly according to the control
process u = (ui)i∈{1,...,n} , u

i = (uit)t∈[0,T ]{
dXi,ui

t = µi(t, u
i
t, X

i,ui

t )dt+ σi(t,X
i,ui

t )dW i
t , for t ∈ [0, T ],

Xi
0,ui

= xi0 ∈ R. (1)

where W := (W i)i∈{1,...,n} stands for an n dim. Brownian Motion (BM).

Example Xu := (Xi,ui)i∈{1,...,n} may represent indoor-temperatures
of a population of fridges with ON/OFF decisions uit ∈ {0, 1}.
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A high dimensional stochastic control problem (2/2)

Problem Control the consumption of a population of �exibilities

(P1)


inf
u∈U

J(u)

J(u) := E

(
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui)

)
.

• The set of admissible controls U is composed of elements
u = (u1, . . . , un) ∈ U = U1 × . . .× Un s.t. for all i ∈ {1, · · · , n}

ui is a progressively measurable process w.r.t. the large

�ltration (Ft)0≤t≤T (6= (F it )0≤t≤T ) where

Ft := σ(Ws | 0 ≤ s ≤ t) while F it := σ(W i
s | 0 ≤ s ≤ t)

ui takes bounded values s.t.

uit(ω) ∈ [−Mi,Mi] for t ∈ [0, T ], 0 < Mi <∞ .

• Example in Dynamic Programming, costs have a speci�c form of the type

F0(v) =

∫ T

0
f0(t, vt)dt , and Fi(u

i, Xi,ui) =

∫ T

0
fi(t, u

i
t, X

i,ui

t )dt
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Numerical issues / Existing approaches

• A stochastic control problem with challenging numerical issues
high dimensional state space (n is big !)
high dimensional noise (n is big !) but no common noise
continuous time ⇒ large number of time steps after discretization

• Existing approaches
Random trees [HigleEtal13, RuszczynskiEtal03]
uncertainties are approximated by a random tree, then decomposition methods are
implemented [RockafellarEtal91, Salinger97].
But limited to problems with a small noise space and few time steps.

Dynamic Programming [Bertsekas04]
I requires Markov property of the system and a speci�c structure of costs
functions.
I curse of (state space) dimensionality limits classical approaches up to
dimension 5.
I Stochastic Dual Dynamic Programming (SDDP) [PereiraEtal91]
allows to consider states up to dimension 30, under convex assumptions.

Dual Approximate Dynamic Programming (DADP)
[Strugarek06, Girardeau10, Alais13, Leclère14, CarpentierEtal18]
consists of a price decomposition, where the stochastic constraints are projected
on subspaces s.t. the Lagrangian multiplier is adapted for dynamic programming.
But in general no error bound can be estimated a priori.

The present approach follows the same spirit as DADP but provides

an a priori error bound ans relies on an original stochastic algorithm.
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Three main steps

1 Approximation of the original problem (P1) ≈ (P2)

(P1) inf
u∈U

J(u) with J(u) := E

(
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui)

)
by the auxiliary problem

(P2) inf
u∈U

J̃(u) with J̃(u) := F0

(
1

n

n∑
i=1

E(ui)

)
+

1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui)

)
2 Lagrangian decomposition of (P3) ⇔ (P2)

(P3)


min

u∈U ,v∈V
J̄(u, v), with J̄(u, v) := F0(v) +

1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui)

)

s.t
1

n

n∑
i=1

E(ui) = v (λ)

3 Stochastic approximation version of Uzawa algorithm to
solve the dual of (P3)
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Four basic assumptions

Assumption

1 F0 is convex.

For any i ∈ {1, . . . , n}:
2 µi σi are Lipschitz w.r.t. space variables and have linear growth.

3 Fi has polynomial growth: |Fi(ui, xi)| ≤ K(1 + sup0≤t≤T |xit|p).
4 Gi : (ν, ω) ∈ L2(0, T )× C([0, T ]) 7→ Fi(ν,X

i,ν(ω)) ∈ R̄.
is strictly convex w.r.t. the �rst variable.

Example: A�ne dynamics and separable local costs w.r.t. control and

state 
µi(t, z, x) = αi(t)z + βi(t)x+ γi(t) ,
σi(x, t) = ξi(t)x+ θi(t) ,
Fi(ν,X) = gi(ν) + hi(X)

where

{
gi : L2(0, T )→ R and hi : C[0, T ]→ R are convex
gi or hi is strictly convex.
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Approximating (P1) by (P2) → decentralized controls

Proposition (Wellposedness)

Both problems (P1) and (P2) admit a unique solution.

Let u∗ denote the unique solution of (P1)
and ũ the unique solution of (P2).
Let F i denote the �ltration generated by the local noise W i.

Proposition (Decentralized controls for (P2))

J̃ reaches its minimum over U at a unique point, ũ ∈ U , such that for

any i, ũi is F i−adapted.

⇒ For any j 6= i, ũi and ũj are mutually independent. In particular

1

n

n∑
i=1

ũi ≈ 1

n

n∑
i=1

E[ũi]

Let Û := {u ∈ U |ui is F i − adapted for all i ∈ {1, . . . , n}}
min
u∈Û

J̃(u) = min
u∈U

J̃(u).
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Approximating (P1) by (P2) : ε-optimality

Theorem (ε-optimality under some regularity assumptions on F0)

If F0 is Lipschitz with constant γ, then ũ is an ε-optimal

solution of (P1), with ε = γM
√
T/n.

If F0 is Gâteaux di�erentiable with c-Lipschitz derivative,

then ũ is an ε-optimal solution of (P1) with ε = cTM2/n.

Besides J(ũ)− J̃(ũ) ≥ J(ũ)− J(u∗) ≥ 0.

• Ideas: 0 ≤︸︷︷︸
Jensen

E[F0(
1

n

n∑
i=1

ũi)]− F0(
1

n

n∑
i=1

E[ũi]) ≤︸︷︷︸
F0 regularity
decentralized ũ

ε.

For any u′ ∈ U we have:

J(ũ) ≤︸︷︷︸
F0 regularity
decentralized ũ

J̃(ũ) + ε ≤︸︷︷︸
optimality of ũ

J̃(u
′
) + ε ≤︸︷︷︸

Jensen

J(u
′
) + ε.
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Lagrangian decomposition of (P3) ⇔ (P2)

• Strong duality holds for (P3)

(P3)


min

u∈U ,v∈V
J̄(u, v), with J̄(u, v) := F0(v) +

1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui)

)

s.t
1

n

n∑
i=1

E(ui)− v = 0 (λ)

• The Lagrangian function associated with (P3) is:
L : U × L2(0, T )× L2(0, T ) −→ R̄ de�ned by:

L(u, v, λ) := J̄(u, v) + 〈λ, 1

n

n∑
i=1

E(ui)− v〉L2(0,T ). (2)

• The dual problem (D) associated with (P3) is:

(D) max
λ∈L2(0,T )

W(λ), where W(λ) := min
u∈U ,v∈V

L(u, v, λ). (3)

with V := {ν ∈ L2(0, T ); |v(t)| ≤ 2M , ∀t ∈ [0, T ]}.
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Uzawa algorithm: from standard to sampled algorithm

• Maximizing the dual function max
λ∈L2(0,T )

W(λ),

max
λ∈L2(0,T )

min
u∈U,v∈V

{
F0(v) +

1

n

n∑
i=1

E[Fi(u
i, Xi,ui

)] + 〈λ, 1

n

n∑
i=1

E(ui)− v〉L2(0,T )

}
.

• Standard Uzawa algorithm given steps (ρk)k≥0 ρk > 0,
Update λk → λk+1 along dual iterations k → k + 1

v(λk) ∈ arg min
v∈V

{F0(v)− 〈λk, v〉L2(0,T )}

ui(λk) := arg min
ui∈Ûi

{
E
(
Fi(u

i, Xi,ui

) + 〈λk, ui〉L2(0,T )

)}
Y (λk) := E

[ 1

n

n∑
j=1

uj(λk)− v(λk)
]

λk+1 = λk + ρkY (λk)

• Sampled Uzawa algorithm Y (λk)→ Ŷ k+1 :

λk+1 = λk + ρkŶ
k+1

where Ŷ k+1 = Y (λk) + rk+1 with E[rk+1] = 0 .
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A natural choice for random variable Ŷ k

• Along dual iterations (Ŷ 1, · · · , Ŷ k, · · · ) are generated independently
• Choose a parameter m ∈ N∗
• At iteration k

Generate independently from the past Ik+1 := (I1,k+1, . . . , Im,k+1)
m i.i.d r.v. uniformly in {1, . . . , n}

Compute the strategies
(
uI

1,k+1

(λk), · · · , uIm,k+1

(λk)
)

Generate independently from the past Bk+1 := (B1,k+1, . . . , Bm,k+1)
m i.i.d BM on [0, T ]

Compute the decisions realization on Bk+1(
uI

1,k+1

(λk)(B1,k+1), · · · , uIm,k+1

(λk)(Bm,k+1)
)

Ŷ k+1 :=
1

m

m∑
j=1

uI
j,k+1

(λk)(Bj,k+1)− v(λk)

• One easily check that Ŷ k+1 = Y (λk) + rk+1 with

E[rk+1 |Gk] = 0 , E[|rk+1|2 |Gk] ≤ C <∞ where Gk := σ
(
(Ip, Bp)0≤p≤k

)
.

which constitutes useful properties for proving convergence. . .
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Sampled Uzawa algorithm

Initialization
(ρk)k s.t. ρk > 0,

∑∞
k=1 ρk =∞,

∑∞
k=1(ρk)2 <∞

m ∈ N∗
kmax ∈ N∗
k = 0
λ0 ∈ L2(0, T )

While k < kmax

1 vk := v(λk) ∈ arg min
v∈V

{F0(v)− 〈λk, v〉L2(0,T )}

2 Generate independently also independently with previous r.v. (Ip, Bp)1≤p≤k

Ik+1 := (I1,k+1, . . . , Im,k+1) m i.i.d r.v. uniformly in {1, . . . , n}
Bk+1 := (B1,k+1, . . . , Bm,k+1) m i.i.d. BM on [0,T]

3 Compute uI
j,k+1

(λk) where ui(λ) := arg min
ui∈Ûi

{
E
(
Fi(u

i, Xi,ui
) + 〈λ, ui〉L2(0,T )

)}
4 Compute the related control realizations(

uI
1,k+1

(λk)(B1,k+1), · · · , uIm,k+1
(λk))(Bm,k+1)

)
5 Ŷ k+1 :=

1

m

m∑
j=1

uI
j,k+1

(λk)(Bj,k+1)− v(λk)

6 λk+1 := λk + ρkŶ
k+1

7 k ← k + 1 17 / 30



Convergence

Theorem (Sampled Uzawa Algrithm and Decentralized Approach)

1 W(λk) −−−→
k→∞

max
λ∈L2(0,T )

W(λ) a.s.

2 {λk}⇀ to some λ̄ ∈ S := arg max
λ∈L2(0,T )

W(λ) in L2(0, T ) a.s.

If F0 is Gâteaux di�. with c-Lipschitz derivative, then S = {λ̄},
1 {‖λk − λ̄‖2L2(0,T )} → 0 a.s.

2 {u(λk)}⇀ u(λ̄) = ũ := arg min
u∈U

J̃(u) a.s.

If moreover F0 is strictly convex, then:

1 J̃(u(λk)) −−−→
k→∞

J̃(ũ) a.s.

2 lim sup
k→∞

J(u(λk)) ≤ infu∈U J(u) + 2 ε(n) a.s. with ε(n) = 2cTM2/n.

Proof results for stochastic approximation in Hilbert spaces are sparse ⇒ the

convergence analysis was conducted inspired by [GeiersbachEtal19].
18 / 30



Outline

1 Motivation

2 Problem and numerical issues

3 Decentralized approach

4 Application to energy management

19 / 30



Thermostatically Controlled Loads (TCLs) providing
Frequency Reserve [TindemansEtal15, BusicEtal16, DePaolaEtal19]

• Global cost: F0(UTCL, RTCL)

UTCL: average consumption
pro�le of TCLs

RTCL: average Frequency
Reserve provided by TCLs

F0 = Balancing cost
resulting from an optimization
problem determining generation
scheduling decisions (power
production and Frequency
Reserve (FR)) in order to
minimize the short term
operating cost of the system
while matching generation and
(�exible and in�exible) demand.
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Thermostatically Controlled Loads (TCLs): state and
control model [KizilkaleEtal16]

• State Xi,ui

t temperature [◦C] controlled by its power consumption uit
[W ] evolves according{

dXi,ui

t = − 1
γi

(Xi,ui

t −Xi
OFF + ζiu

i
t)dt+ σi dW

i
t , for t ∈ [0, T ],

Xi
0,ui

= xi0 ∈ R,
(4)

where:

γi is its thermal time constant [s].

Xi
OFF is the ambient temperature [◦C].

ζi is the heat exchange parameter [◦C/W ].

σi is a positive constant [(◦C)s
1
2 ],

W i is a Brownian Motion [s
1
2 ], independent from W j for any j 6= i.

• Set of admissible controls

Ui := {ν ∈ Hi and νt(ω) ∈ {0, PON,i} for a.e. (t, ω) ∈ [0, T ]× Ωi}.

21 / 30



High dimensional stochastic control problem

• UTCL = 1
n

∑n
i=1 u

i and RTCL = 1
n

∑n
i=1 ri(u

i, Xi,ui)

(P TCL1 )


inf
u∈U

J(u)

J(u) := E
(
F0

(
1
n

∑n
i=1 u

i, 1
n

∑n
i=1 ri(u

i, Xi,ui)
))

+E
(

1
n

∑n
i=1

∫ T
0 fi(u

i
s, X

i,ui
s )ds+ γi(X

i,ui

T − X̄i)2
)
,

where, for any i ∈ {1, . . . , n} and any s ∈ [0, T ]:

Amount of FR provided by TCL i at time s:

ri(u
i, Xi,ui)(s) := uis

Xi,ui
s −Xi

min

Xi
max −Xi

min

.

Individual discomfort of TCL i at time s:

fi(u
i
s, X

i,ui

s ) := αi (Xi,ui

s − X̄i)2 + βi((X
i
min −Xi,ui

s )2+ + (Xi,ui

s −Xi
max)2+).

Terminal cost imposing periodic behavior, γi(X
i,ui

T − X̄i)
2
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Simulation parameters [DePaolaEtal19]

• Model parameters

T = 24 hours

The generation technologies available in the system are

nuclear : installed capacity 10GW
Combined Cycle Gas Turbines (CCGT): installed capacity 25GW
Open Cycle Gas Turbines (OCGT): installed capacity 20GW

wind: installed capacity 40GW.

TCLs Population Size n = 20× 106

Power consumption PON,i = 180W , other parameters γi and X
i
OFF are taken from [?]

(Common) volatility of TCLs temperature dynamics: σi := 0, 1, 2

• Sampled Uzawa Algorithm parameters

m = 317 simulations per iteration of

Algorithm is stopped after kmax = 75 iterations

• Local TCLs sub-problems involve the dual prices (λ, ρ) associated to power and
reserve constraints

inf
ui∈Ui

∫ T

0
fi(u

i
s, X

i,ui

s ) + uisλ
k
s − ri(ui, Xi,ui

)(s)ρks ds,

are solved by a �nite di�erence scheme the discretization discretizing the related one
dimensional HJB equation with time steps ∆t = 7.6 s and temperature steps ∆θ = 0.15◦C.
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TCLS Responses and Prices as a function of time (hours)

Power Consumption U (solid lines) (MWh) Power prices (£/MWh) and
and Frequency Response R (doted lines) (MW) Reserve prices (£/MW)
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Generators Power generation and Frequency Response
deviations from Buisness as Usualas a function of time (hours)

Deviation of Power generation Deviation of Frequency Response
from Buisness as Usual (MWh) from Buisness as Usual (MW)
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Minimized system costs in (£)
with or without TCL �exibilities

σ = 0 σ = 1 σ = 2

BaU (M£) 27.70 27.70 27.72

Flex (M£) 27.19 27.25 27.40

BaU-Flex −1.9% −1.6% −1.2%
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Thank You !
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