

Sampling rates for ℓ^1 -synthesis

C. Boyer, J. Kahn, M. März, P. Weiss Séminaire Français d'optimisation, 03/12/2020

Figure: Where it all started: a puzzling experiment...

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory, 52(2):489-509, 2006.

The problem

The image can be viewed as a vector $x_0 \in \mathbb{R}^n$. The measurement operator is $A \in \mathbb{R}^{m \times n}$ (Fourier sub-sampling). We observe $y = Ax_0$.

How to recover x_0 from y despite $m \ll n$?

The previous experiment

The estimate \hat{x} was set as

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^n, Ax = y} \| \nabla x \|_1,$$

where $\nabla : \mathbb{R}^n \to \mathbb{R}^{2n}$ is a discrete version of the gradient operator.

(1)

A complete fraud?

- The matrix A was deterministic.
- We don't solve (2).
- The image has nothing sparse!

- The matrix A was deterministic.
- We don't solve (2).
- The image has nothing sparse!

To date, the previous phenomenon is still not understood!

This talk

- Compressed sensing is a success story.
- Now validated in various real life applications.
- Many facets in sampling theory are still obscure.

Objective: progress in understanding the previous experiment (and many others).

This talk

- Compressed sensing is a success story.
- Now validated in various real life applications.
- Many facets in sampling theory are still obscure.

Objective: progress in understanding the previous experiment (and many others). Disclaimer: we will fail.

A more realistic (noisy) setting

We assume that:

$$y = Ax_0 + e$$

with $||e||_2 \leq \eta$ for $\eta \geq 0$.

The synthesis formulation (this talk) We consider a dictionary (possibly $d \gg n$):

$$D = [d_1, \ldots, d_d] \in \mathbb{R}^{n \times d}$$

The synthesis formulation is:

$$\min_{z \in \mathbb{R}^d} \|z\|_1 \quad \text{s.t.} \quad \|ADz - y\|_2 \le \eta \qquad (\mathcal{P}_z^\eta)$$

We let \hat{Z} denote the set of minimizers and $\hat{X} = D\hat{Z}$.

The analysis formulation

Consider a linear transform $L = [l_1, \ldots, l_p] \in \mathbb{R}^{n \times p}$ (possibly $p \gg n$): The analysis formulation is:

$$\min_{x \in \mathbb{R}^n} \|L^* x\|_1 \quad \text{s.t.} \quad \|Ax - y\|_2 \le \eta. \tag{\mathcal{A}_x^η}$$

The analysis formulation

Consider a linear transform $L = [l_1, \ldots, l_p] \in \mathbb{R}^{n \times p}$ (possibly $p \gg n$): The analysis formulation is:

$$\min_{x \in \mathbb{R}^n} \|L^* x\|_1 \quad \text{s.t.} \quad \|Ax - y\|_2 \le \eta. \tag{\mathcal{A}^η_x}$$

 $\begin{array}{l} \hline \textbf{Theorem 1 (Analysis VS Synthesis).}\\ Let \ g_K(x) := & \inf_{\lambda>0} \{x \in \lambda K\} \ denote \ the \ gauge \ of \ a \ convex \ K.\\ Let \ g_D := \ g_{DB_1^d}, \ then \ we \ have\\ & \hat{X} = & \inf_{x \in \mathbb{R}^n} g_D(x) \quad s.t. \quad \|Ax - y\|_2 \leq \eta. \qquad (\mathcal{P}_x^\eta)\\ If \ \{d_1, \ldots, d_d\} = & \operatorname{Ext}(\{x, \|L^*x\|_1 \leq 1\}):\\ & \mathcal{P}_x^\eta = \mathcal{A}_x^\eta \end{array}$

The analysis formulation

Consider a linear transform $L = [l_1, \ldots, l_p] \in \mathbb{R}^{n \times p}$ (possibly $p \gg n$): The analysis formulation is:

$$\min_{x \in \mathbb{R}^n} \|L^* x\|_1 \quad \text{s.t.} \quad \|Ax - y\|_2 \le \eta. \tag{\mathcal{A}_x^η}$$

Theorem 1 (Analysis VS Synthesis). Let $g_K(x) := \inf_{\lambda>0} \{x \in \lambda K\}$ denote the gauge of a convex K. Let $g_D := g_{DB^d}$, then we have

 $\hat{X} = \inf_{x \in \mathbb{R}^n} g_D(x) \quad s.t. \quad \|Ax - y\|_2 \le \eta. \tag{\mathcal{P}_x^η}$

If $\{d_1, \ldots, d_d\} = \operatorname{Ext}(\{x, \|L^*x\|_1 \le 1\})$:

$$\mathcal{P}^{\eta}_x = \mathcal{A}^{\eta}_x$$

Analysis problems \subsetneq Synthesis problems But: combinatorial explosion of extreme points for the analysis.

A generic regularization framework

Let $f:\mathbb{R}^n\to\mathbb{R}$ denote a convex function.

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{s.t.} \qquad \|Ax - y\|_2 \le \eta,$$

Definition 2 (Descent cone).

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and $x_0 \in \mathbb{R}^n$. The **descent set** of f at x_0 is given by

$$\mathcal{D}_{f,x_0} := \{ h \in \mathbb{R}^n : f(x_0 + h) \le f(x_0) \},$$
(3)

The **descent cone** is defined by $\mathcal{D}_{\wedge}(f, x_0) := \operatorname{cone}(\mathcal{D}_{f, x_0}).$

Definition 3 (Minimum conic singular value). Consider $A \in \mathbb{R}^{m \times n}$ and a cone $K \subseteq \mathbb{R}^n$. The minimum conic singular value of A relative to K is:

$$\lambda_{\min}(A, K) := \inf_{x \in K \cap \mathbb{S}^{n-1}} \|Ax\|_2.$$
(4)

Theorem 4 (Recovery conditions).

• If $\eta = 0$ then the following are equivalent:

•
$$\hat{x} = x_0$$

- $\operatorname{ker}(A) \cap \mathcal{D}_{\wedge}(f, x_0) = \{0\}$
- $\lambda_{\min}(A, \mathcal{D}_{\wedge}(f, x_0)) > 0$

• For $\eta > 0$, any solution \hat{x} of the previous convex program satisfies:

$$\|\hat{x} - x_0\|_2 \le rac{2\eta}{\lambda_{\min}(A, \mathcal{D}_{\wedge}(f, x_0))}$$

1		
-		
	d	

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the edge: Phase transitions in convex programs with random data. Information and Inference: A Journal of the IMA, 3(3):224-294, 2014.

A useful condition?

For arbitrary A and convex cone K

Testing $\lambda_{\min}(A, K) > 0$ is NP-hard!

(This is an instance of testing the co-positivity of matrices)

Katta G Murty and Santosh N Kabadi.

Some np-complete problems in quadratic and nonlinear programming. Technical report, 1985.

Definition 5 (Mean width). ● The mean width of a set K ∈ ℝⁿ is w(K) = E (sup ⟨g, h⟩) with g ~ N(0, I_n). ● The conic mean width of a cone K ∈ ℝⁿ is w_{\(\Lef{K}\)} = w(K ∩ Sⁿ⁻¹)

Theorem 6 (Generic recovery).

Assume that $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix then

$$\lambda_{\min}(A, K) \ge \sqrt{m-1} - w_{\wedge}(K) - u$$

with probability larger than $1 - e^{-u^2/2}$. A sufficient condition for robust recovery is

 $m \ge w_\wedge (\mathcal{D}_\wedge(f, x_0))^2 + 1.$

Theorem 7 (Phase transitions).

- For $m \ge w_{\wedge}(\mathcal{D}_{\wedge}(f, x_0))^2 + 1 \log(\epsilon)\sqrt{n}$ succeeds with probability $> 1 \epsilon$.
- For $m \leq w_{\wedge}(\mathcal{D}_{\wedge}(f, x_0))^2 + 1 + \log(\epsilon)\sqrt{n}$ succeeds with probability $< \epsilon$.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the edge: Phase transitions in convex programs with random data. Information and Inference: A Journal of the IMA, 3(3):224-294, 2014.

Definition 8 (Minimal ℓ^1 representers).

Let $x_0 \in \mathbb{R}^n$ denote a signal and $D \in \mathbb{R}^{n \times d}$ be a dictionary. The set of minimal ℓ^1 representers of x_0 w.r.t. D is

 $Z_{\ell^1} := \operatorname*{argmin}_{Dz=x_0} \|z\|_1.$

Remark (Uniqueness).

For a dictionary in generic position, $Z_{\ell^1} = \{z_{\ell^1}\}$ is a singleton. For practical dictionaries (e.g. redundant wavelets) it is not.

Definition 8 (Minimal ℓ^1 representers).

Let $x_0 \in \mathbb{R}^n$ denote a signal and $D \in \mathbb{R}^{n \times d}$ be a dictionary. The set of minimal ℓ^1 representers of x_0 w.r.t. D is

 $Z_{\ell^1} := \operatorname*{argmin}_{Dz=x_0} \|z\|_1.$

Remark (Uniqueness).

For a dictionary in generic position, $Z_{\ell^1} = \{z_{\ell^1}\}$ is a singleton. For practical dictionaries (e.g. redundant wavelets) it is not.

Remark (A necessary condition for coefficient recovery).

Depending on the application we may solve \mathcal{P}_z^{τ} or \mathcal{P}_x^{η} . Recovering z_0 s.t. $x_0 = Dz_0$ is only possible if $Z_{\ell^1} = \{z_0\}$.

Proposition (Descent cone of the gauge).

Let x_0 denote a vector with minimal l^1 representers Z_{ℓ^1} . Then

 $\mathcal{D}_{\wedge}(g_D, x_0) = D \cdot \mathcal{D}_{\wedge}(\|\cdot\|_1, z_{\ell^1}) \quad \text{for all} \quad z_{\ell^1} \in Z_{\ell^1}.$

 $\begin{array}{l} \textbf{Theorem 9 (Sampling rates for coefficients (noisy)).}\\ Let \ z_0 \in \mathbb{R}^d \ be \ a \ coefficient \ and \ y = ADz_0 + e. \ Then \ if\\ \\ Z_{\ell^1} = \{z_0\} \quad and \quad m \ge m_0 := (w_\wedge (D \cdot \mathcal{D}_\wedge (\| \cdot \|_1, z_0)) + u)^2 + 1,\\ any \ solution \ \hat{z} \ of \ (\mathcal{P}_z^\eta) \ satisfies \ with \ probability > 1 - e^{-u^2/2}\\ \\ \|z_0 - \hat{z}\|_2 \le \frac{2\eta}{\lambda_{\min}(D, \mathcal{D}_\wedge (\| \cdot \|_1, z_0))(\sqrt{m - 1} - \sqrt{m_0 - 1})}. \end{array}$

 $\begin{array}{l} \textbf{Theorem 9 (Sampling rates for coefficients (noisy)).}\\ Let \ z_0 \in \mathbb{R}^d \ be \ a \ coefficient \ and \ y = ADz_0 + e. \ Then \ if\\ Z_{\ell^1} = \{z_0\} \quad and \quad m \ge m_0 := (w_\wedge (D \cdot \mathcal{D}_\wedge (\| \cdot \|_1, z_0)) + u)^2 + 1,\\ any \ solution \ \hat{z} \ of \ (\mathcal{P}_z^\eta) \ satisfies \ with \ probability > 1 - e^{-u^2/2}\\ \|z_0 - \hat{z}\|_2 \le \frac{2\eta}{\lambda_{\min}(D, \mathcal{D}_\wedge (\| \cdot \|_1, z_0))(\sqrt{m-1} - \sqrt{m_0 - 1})}. \end{array}$

Theorem 10 (Sampling rates for signal).

Let $x_0 \in \mathbb{R}^n$ be a signal and $y = Ax_0 + e$. Then for $m \ge m_0$ any solution \hat{x} of

$$\min_{x \in \mathbb{R}^n} g_D(x) \quad s.t. \quad \|Ax - y\|_2 \le \eta.$$

satisfies:

$$||x_0 - \hat{x}||_2 \le \frac{2\eta}{\sqrt{m-1} - \sqrt{m_0 - 1}}.$$

Conclusion

$Sampling \ rates \ coefficients = sampling \ rate \ signal.$

Stability to noise is different.

Critical quantity = conic mean width of a linearly transformed cone

 $w_{\wedge}(D \cdot \mathcal{D}_{\wedge}(\|\cdot\|_1, z_0)).$

Uniform recovery VS non uniform recovery

Compressed sensing started with the Restricted Isometry Property leading to:

All s-sparse vectors are recovered with probability X if $m > m_{RIP}$.

Here:

A specific vector z_0 is recovered with probability Y if $m > m_{z_0}$.

The Restricted Isometry Property...

- RIP = far stronger statement.
- RIP = optimal for orthogonal D, super pessimistic otherwise.
- RIP = useless in 99% of the practical cases.

Understanding the descent cone

A cryptic quantity: $w_{\wedge}(D \cdot \mathcal{D}_{\wedge}(\|\cdot\|_1, z))$.

Understanding the descent cone

A cryptic quantity: $w_{\wedge}(D \cdot \mathcal{D}_{\wedge}(\|\cdot\|_1, z))$.

 $\mathcal{D}_{\wedge}(\|\cdot\|_{1}, z_{0}) = \operatorname{cone}(z \pm \|z\|_{1}e_{i}, 1 \le i \le d)$

Theorem 11 (Orthogonal decomposition).

$$C = D\mathcal{D}_{\wedge}(\|\cdot\|_{1}, z_{0}) = C_{L} \oplus C_{R}$$
with for any $z \in \operatorname{ri}(Z_{\ell^{1}}), \ \bar{s} = \|z\|_{0}$:

$$C_{L} = \operatorname{span}(x_{0} - \bar{s} \cdot \operatorname{sign}(z_{i})d_{i})$$

$$C_{R} = \operatorname{cone}(r_{i}^{\pm}, i \in S^{c}) \ \text{with} \ r_{i}^{\pm} := \Pi_{C_{L}^{\perp}}(Dz \pm \bar{s} \cdot \operatorname{sign}(z_{i})d_{i})$$

Definition 12 (Circumangle).

Let $C \subsetneq \mathbb{R}^n$ denote a closed convex cone. The **circumangle** $\alpha(C)$ is defined by:

$$\cos(\alpha) = \sup_{\|\theta\|_2 = 1} \inf_{x \in C, \|x\|_2 = 1} \langle x, \theta \rangle$$

Definition 12 (Circumangle).

Let $C \subsetneq \mathbb{R}^n$ denote a closed convex cone. The **circumangle** $\alpha(C)$ is defined by:

$$\cos(\alpha) = \sup_{\|\theta\|_2 = 1} \inf_{x \in C, \|x\|_2 = 1} \langle x, \theta \rangle$$

Theorem 13 (Width of polyhedral α cones).

Let C_k^{α} denote the set of k-polyhedral α cones in \mathbb{R}^n . Then

 $\sup_{C \in C_k^\alpha} w_\wedge(C) = O(\tan(\alpha)\sqrt{2\log(k)}).$

Theorem 14 (An upper bound on the sampling rate). Let $\alpha = circumangle of C_R$. We have:

 $w^2_{\wedge}(\mathcal{D}_{\wedge}(g_D, x_0)) \le \overline{s} + C \tan(\alpha)^2 \log(d)$

The critical number of measurements is

 $m_0 \equiv \bar{s} + \tan(\alpha)^2 \log(d).$

Computing $\alpha \equiv convex \ problem!$

Theorem 14 (An upper bound on the sampling rate). Let $\alpha = circumangle$ of C_R . We have:

 $w^2_{\wedge}(\mathcal{D}_{\wedge}(g_D, x_0)) \le \bar{s} + C \tan(\alpha)^2 \log(d)$

The critical number of measurements is

 $m_0 \equiv \bar{s} + \tan(\alpha)^2 \log(d).$

Computing $\alpha \equiv convex \ problem!$

Ongoing...

Show that the previous bound:

• recovers all the best existing results.

• allows to establish new ones (super-resolution, wavelet frames).

What about total gradient variation?

What about total gradient variation?

Figure: Different 2-sparse vectors have very different complexities.

1 23 /

What about total gradient variation?

Theorem 15 (1D TV and the circumangle). x_0 : piecewise constant with s jumps with signs (σ_k) at $(p_k)_{1 \le k \le s}$. Then $m_0 \le s + C\sqrt{\frac{n}{4L}}\log(n)^{3/2}$ With $L = \frac{1}{\sum_k |(\sigma_{k+1} - \sigma_k)|/(p_{k-1} - p_k)}$ $L \equiv$ harmonic mean of the distances between jumps of opposite signs.

Similar conclusions in:

Francesco Ortelli and Sara van de Geer. Oracle inequalities for image denoising with total variation regularization. Information&Inference, 2019.

24 / 2

Conclusion

Contributions

- ✓ Sampling rates for the synthesis problem (coefficient and signal).
- ✓ Decent upper-bounds for the conic width of linearly transformed cones.
- \checkmark Dissected the descent cone of the $\ell^1\text{-ball}.$
- $\times\,$ Quantities are still partly cryptic.
- $\times\,$ Case by case study of practical dictionaries is technical.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the edge: Phase transitions in convex programs with random data. Information and Inference: A Journal of the IMA, 3(3):224-294, 2014.

Claire Boyer, Jonas Kahn, Maximilian März, and Pierre Weiss. Sampling rates for ℓ^1 -synthesis. preprint, 2020.

Thanks for your attention