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Context and objectives

Figure: Where it all started: a puzzling experiment...

Emmanuel J Candès, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.
IEEE Transactions on information theory, 52(2):489–509, 2006.
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Context and objectives

The problem
The image can be viewed as a vector x0 ∈ Rn.
The measurement operator is A ∈ Rm×n (Fourier sub-sampling).
We observe y = Ax0.

How to recover x0 from y despite m� n?

The previous experiment
The estimate x̂ was set as

x̂ ∈ argmin
x∈Rn,Ax=y

‖∇x‖1, (1)

where ∇ : Rn → R2n is a discrete version of the gradient operator.
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Context and objectives

The typical accompanying theorems
Assume that

The image x0 is s-sparse with m ≥ Cs log(n/s).
The coefficients of A ∈ Rm×n are i.i.d. normal random variables.

Set
x̂ ∈ argmin

Ax=y
‖x‖1. (2)

Then x̂ = x0 with high probability!
Emmanuel J Candès, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information.
IEEE Transactions on information theory, 52(2):489–509, 2006.

A complete fraud?

The matrix A was deterministic.

We don’t solve (2).

The image has nothing sparse!

To date, the previous phenomenon is still not understood!
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Context and objectives

This talk

Compressed sensing is a success story.

Now validated in various real life applications.

Many facets in sampling theory are still obscure.

Objective: progress in understanding the previous experiment (and many others).

Disclaimer: we will fail.
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Preliminaries

A more realistic (noisy) setting
We assume that:

y = Ax0 + e

with ‖e‖2 ≤ η for η ≥ 0.

The synthesis formulation (this talk)
We consider a dictionary (possibly d� n):

D = [d1, . . . , dd] ∈ Rn×d

The synthesis formulation is:

min
z∈Rd

‖z‖1 s.t. ‖ADz − y‖2 ≤ η (Pηz )

We let Ẑ denote the set of minimizers and X̂ = DẐ.
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Preliminaries

The analysis formulation
Consider a linear transform L = [l1, . . . , lp] ∈ Rn×p (possibly p� n):
The analysis formulation is:

min
x∈Rn

‖L∗x‖1 s.t. ‖Ax− y‖2 ≤ η. (Aηx)

Theorem 1 (Analysis VS Synthesis).
Let gK(x) := inf

λ>0
{x ∈ λK} denote the gauge of a convex K.

Let gD := gDBd1
, then we have

X̂ = inf
x∈Rn

gD(x) s.t. ‖Ax− y‖2 ≤ η. (Pηx )

If {d1, . . . , dd} = Ext({x, ‖L∗x‖1 ≤ 1}):

Pηx = Aηx

Analysis problems  Synthesis problems
But: combinatorial explosion of extreme points for the analysis.
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Preliminaries

A generic regularization framework

Let f : Rn → R denote a convex function.

min
x∈Rn

f(x) s.t. ‖Ax− y‖2 ≤ η,

Definition 2 (Descent cone).
Let f : Rn → R be a convex function and x0 ∈ Rn.
The descent set of f at x0 is given by

Df,x0 := {h ∈ Rn : f(x0 + h) ≤ f(x0)} , (3)

The descent cone is defined by D∧(f, x0) := cone(Df,x0).

Definition 3 (Minimum conic singular value).
Consider A ∈ Rm×n and a cone K ⊆ Rn.
The minimum conic singular value of A relative to K is:

λmin(A,K) := inf
x∈K∩Sn−1

‖Ax‖2. (4)
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Preliminaries
Theorem 4 (Recovery conditions).

If η = 0 then the following are equivalent:
x̂ = x0

ker(A) ∩ D∧(f, x0) = {0}
λmin(A,D∧(f, x0)) > 0

For η > 0, any solution x̂ of the previous convex program satisfies:

‖x̂− x0‖2 ≤
2η

λmin(A,D∧(f, x0))

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA, 3(3):224–294, 2014.
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Preliminaries

A useful condition?
For arbitrary A and convex cone K

Testing λmin(A,K) > 0 is NP-hard!

(This is an instance of testing the co-positivity of matrices)

Katta G Murty and Santosh N Kabadi.
Some np-complete problems in quadratic and nonlinear programming.
Technical report, 1985.

10 / 25
N



Preliminaries

Definition 5 (Mean width).
The mean width of a set K ∈ Rn is

w(K) = E
(
sup
h∈K
〈g, h〉

)
with g ∼ N (0, In).

The conic mean width of a cone K ∈ Rn is

w∧(K) = w(K ∩ Sn−1)

Theorem 6 (Generic recovery).
Assume that A ∈ Rm×n is a Gaussian random matrix then

λmin(A,K) ≥
√
m− 1− w∧(K)− u

with probability larger than 1− e−u
2/2.

A sufficient condition for robust recovery is

m ≥ w∧(D∧(f, x0))2 + 1.
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Preliminaries

Theorem 7 (Phase transitions).
For m ≥ w∧(D∧(f, x0))2 + 1− log(ε)

√
n succeeds with probability > 1− ε.

For m ≤ w∧(D∧(f, x0))2 + 1 + log(ε)
√
n succeeds with probability < ε.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA, 3(3):224–294, 2014.
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Sampling rates

Definition 8 (Minimal `1 representers).
Let x0 ∈ Rn denote a signal and D ∈ Rn×d be a dictionary.
The set of minimal `1 representers of x0 w.r.t. D is

Z`1 := argmin
Dz=x0

‖z‖1.

Remark (Uniqueness).
For a dictionary in generic position, Z`1 = {z`1} is a singleton.
For practical dictionaries (e.g. redundant wavelets) it is not.
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Sampling rates

Remark (A necessary condition for coefficient recovery).
Depending on the application we may solve Pηz or Pηx .
Recovering z0 s.t. x0 = Dz0 is only possible if Z`1 = {z0}.

Proposition (Descent cone of the gauge).
Let x0 denote a vector with minimal l1 representers Z`1 . Then

D∧(gD, x0) = D · D∧(‖ · ‖1, z`1) for all z`1 ∈ Z`1 .
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Sampling rates

Theorem 9 (Sampling rates for coefficients (noisy)).
Let z0 ∈ Rd be a coefficient and y = ADz0 + e. Then if

Z`1 = {z0} and m ≥ m0 := (w∧(D · D∧(‖ · ‖1, z0)) + u)2 + 1,

any solution ẑ of (Pηz ) satisfies with probability > 1− e−u
2/2

‖z0 − ẑ‖2 ≤
2η

λmin(D,D∧(‖ · ‖1, z0))(
√
m− 1−

√
m0 − 1)

.

Theorem 10 (Sampling rates for signal).
Let x0 ∈ Rn be a signal and y = Ax0 + e. Then for m ≥ m0 any solution x̂ of

min
x∈Rn

gD(x) s.t. ‖Ax− y‖2 ≤ η.

satisfies:

‖x0 − x̂‖2 ≤
2η√

m− 1−
√
m0 − 1

.
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any solution ẑ of (Pηz ) satisfies with probability > 1− e−u
2/2

‖z0 − ẑ‖2 ≤
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Sampling rates

Conclusion

Sampling rates coefficients = sampling rate signal.

Stability to noise is different.

Critical quantity = conic mean width of a linearly transformed cone

w∧(D · D∧(‖ · ‖1, z0)).
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Sampling rates

Uniform recovery VS non uniform recovery
Compressed sensing started with the Restricted Isometry Property leading to:

All s-sparse vectors are recovered with probability X if m > mRIP .

Here:

A specific vector z0 is recovered with probability Y if m > mz0 .

The Restricted Isometry Property...

RIP = far stronger statement.

RIP = optimal for orthogonal D, super pessimistic otherwise.

RIP = useless in 99% of the practical cases.

17 / 25
N



Upper bounds on the conic Gaussian width

Understanding the descent cone
A cryptic quantity: w∧(D · D∧(‖ · ‖1, z)).

D∧(‖ · ‖1, z0) = cone(z ± ‖z‖1ei, 1 ≤ i ≤ d)
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Upper bounds on the conic Gaussian width

Theorem 11 (Orthogonal decomposition).

C = DD∧(‖ · ‖1, z0) = CL ⊕ CR
with for any z ∈ ri(Z`1), s̄ = ‖z‖0:

CL = span(x0 − s̄ · sign(zi)di)

CR = cone(r±i , i ∈ S
c) with r±i := ΠC⊥

L
(Dz ± s̄ · sign(zi)di)
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Upper bounds on the conic Gaussian width

Definition 12 (Circumangle).
Let C ( Rn denote a closed convex cone.
The circumangle α(C) is defined by:

cos(α) = sup
‖θ‖2=1

inf
x∈C,‖x‖2=1

〈x, θ〉

Theorem 13 (Width of polyhedral α cones).
Let Cαk denote the set of k-polyhedral α cones in Rn.
Then

sup
C∈Cα

k

w∧(C) = O(tan(α)
√

2 log(k)).
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Upper bounds on the conic Gaussian width

Theorem 14 (An upper bound on the sampling rate).
Let α = circumangle of CR. We have:

w2
∧(D∧(gD, x0)) ≤ s̄+ C tan(α)2 log(d)

The critical number of measurements is

m0 ≡ s̄+ tan(α)2 log(d).

Computing α ≡ convex problem!

Ongoing...

Show that the previous bound:
recovers all the best existing results.

allows to establish new ones (super-resolution, wavelet frames).
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What about total gradient variation?

Example with 1D total variation
Let y = Ax0 + e, with x̄0 = 0. Consider:

min
x∈Rn

‖Lx‖1 s.t. ‖Ax− y‖2 ≤ η (TV1D)

where (Lx)i = xi+1 − xi. Then (TV1D) is equivalent to

min
z∈Rn−1

‖z‖1 s.t. ‖ADz − y‖2 ≤ η with D = [d1, . . . , dn−1]
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What about total gradient variation?

Early remarks

Coherence(D) = max
i 6=j

|〈di, dj〉|
‖di‖2 · ‖dj‖2

' 1.

Usual theories cannot work: sparsity is not the right complexity measure!

0 50 100 150
-1

-0.5

0

0.5

1

(a) m0 ' 5.
0 50 100 150

0

0.2

0.4

0.6

0.8

1

(b) m0 very large!

Figure: Different 2-sparse vectors have very different complexities.
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What about total gradient variation?

Theorem 15 (1D TV and the circumangle).

x0: piecewise constant with s jumps with signs (σk) at (pk)1≤k≤s.

Then

m0 ≤ s+ C

√
n

4L
log(n)3/2

With
L =

1∑
k |(σk+1 − σk)|/(pk−1 − pk)

L ≡ harmonic mean of the distances between jumps of opposite signs.

Similar conclusions in:
Francesco Ortelli and Sara van de Geer.
Oracle inequalities for image denoising with total variation regularization.
Information&Inference, 2019.
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Conclusion

Contributions

4 Sampling rates for the synthesis problem (coefficient and signal).

4 Decent upper-bounds for the conic width of linearly transformed cones.

4 Dissected the descent cone of the `1-ball.

5 Quantities are still partly cryptic.

5 Case by case study of practical dictionaries is technical.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA, 3(3):224–294, 2014.

Claire Boyer, Jonas Kahn, Maximilian März, and Pierre Weiss.
Sampling rates for `1-synthesis.
preprint, 2020.

Thanks for your attention
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