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Context and objectives

(@)

Figure: WHERE IT ALL STARTED: A PUZZLING EXPERIMENT...

Emmanuel J Candés, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.
IEEE Transactions on information theory, 52(2):489-509, 2006




Context and objectives

The problem

The image can be viewed as a vector zo € R".
The measurement operator is A € R™*™ (Fourier sub-sampling).
We observe y = Axg.

How to recover x¢ from y despite m < n?

The previous experiment

The estimate T was set as

2 € argmin |[Vz|, (1)
R, Az=y

where V : R™ — R?" is a discrete version of the gradient operator.




Context and objectives

The typical accompanying theorems

Assume that
® The image xq is s-sparse with m > Cslog(n/s).
@ The coefficients of A € R™*™ are i.i.d. normal random variables.
@ Set

& € argmin ||z||1.
Az=y

Then & = ¢ with high probability!

Emmanuel J Candés, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information.

IEEE Transactions on information theory, 52(2):489-509, 2006.
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A complete fraud?
® The matrix A was deterministic.
@ We don’t solve (2).

@ The image has nothing sparse!
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A complete fraud?

@ The matrix A was deterministic.
@ We don’t solve (2).

@ The image has nothing sparse!

To date, the previous phenomenon is still not understood!




Context and objectives

This talk

@ Compressed sensing is a success story.
@ Now validated in various real life applications.
@ Many facets in sampling theory are still obscure.

Objective: progress in understanding the previous experiment (and many others).




Context and objectives

This talk

@ Compressed sensing is a success story.
@ Now validated in various real life applications.
@ Many facets in sampling theory are still obscure.
Objective: progress in understanding the previous experiment (and many others).

Disclaimer: we will fail.




Preliminaries

A more realistic (noisy) setting

We assume that:
y=Axo+e

with |le|l2 < n for n > 0.

The synthesis formulation (this talk)
We consider a dictionary (possibly d > n):

D = [dl,...,dd] S RnXd
The synthesis formulation is:

min |[z]1  s.t.  |JADz—y|2 <7
z€ERI

We let Z denote the set of minimizers and X = DZ.




Preliminaries

The analysis formulation

Consider a linear transform L = [ly,. ..

The analysis formulation is:

min ||L* x|,
T€R™

st |JAz —yll2 <.

,Ip] € R™*P (possibly p > n):




Preliminaries

The analysis formulation

Consider a linear transform L = [l1,...,1,] € R"*? (possibly p > n):
The analysis formulation is:

min [L7z]i st [lAz —yll2 <. (A2)

Theorem 1 (Analysis VS Synthesis).
Let gr(x) := info{x € MK} denote the gauge of a convex K.
>

Let gp = 9B then we have
X = inf gp(z) st [Az—yl<n. (PI)

If{ds,...,ds} = Ext({z, |L*z|l < 1}):
Pl =A]




Preliminaries

The analysis formulation

Consider a linear transform L = [l1,...,1,] € R"*? (possibly p > n):
The analysis formulation is:

min [L7z]i st [lAz —yll2 <. (A2)

Theorem 1 (Analysis VS Synthesis).
Let gr(x) := info{x € MK} denote the gauge of a convex K.
>

Let gp = 9B then we have
X = zigr]lgn gp(z) st ||JAz —yl2 <. (P
If {dv,...,da} = Ext({z, ||[L*z|1 < 1}):

Pl = Al

Analysis problems & Synthesis problems

But: combinatorial explosion of extreme points for the analysis.




Preliminaries

A generic regularization framework
Let f: R™ — R denote a convex function.

min f(z) st Az —yll2 <,

Definition 2 (Descent cone).

Let f: R™ — R be a convex function and zo € R".
The descent set of f at x¢ is given by

Do :={h €R": f(zo + h) < f(x0)}, ®3)

The descent cone is defined by Da(f, zo) := cone(Dy 4, ).

Definition 3 (Minimum conic singular value).

Consider A € R™*" and a cone K C R".
The minimum conic singular value of A relative to K is:

>\min(A, K) = inf HAZI)”Q (4)

zeKNSn—1




Preliminaries

Theorem 4 (Recovery conditions).
@ Ifp =0 then the following are equivalent:
e T =uwxo
o ker(A) N Da(f,z0) = {0}
© Amin(A, Da(f, o)) > 0

@ Forn > 0, any solution & of the previous convex program satisfies:

N 2
I — zollz < ——————
Amin(AypA (.f: xo))

A+ null{A) A+ null(A)

[x:fix)= flxg) lx:fix)= flxgh

xp+D(f, xp) xp+D(f. x0)

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA, 3(3):224-294, 2014.

A



Preliminaries

A useful condition?

For arbitrary A and convex cone K
Testing Amin (A, K) > 0 is NP-hard!
(This is an instance of testing the co-positivity of matrices)

Katta G Murty and Santosh N Kabadi.
Some np-complete problems in quadratic and nonlinear programming.
Technical report, 1985




Preliminaries

Definition 5 (Mean width).
@ The mean width of a set K € R" is

w(K)=E (sgg(g, h>) with g ~ N (0, I,).

@ The conic mean width of a cone K € R™ is
wa(K) = w(K NSt

Theorem 6 (Generic recovery).
Assume that A € R™*" is a Gaussian random matriz then

Amin (A, K) > vm — 1 —wa(K) —u
with probability larger than 1 — eV /2,
A sufficient condition for robust recovery is

m > wa(Da(f,20))* + 1.




Preliminaries

Theorem 7 (Phase transitions).
@ For m > wa(Da(f,20))? + 1 — log(e)y/n succeeds with probability > 1 — .

@ For m < wa(Da(f,20))? + 1 + log(e)/n succeeds with probability < .

Number of random measurements

25 50 75
Number of nonzeros of x

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.




Sampling rates

Definition 8 (Minimal ¢' representers).

Let 2o € R™ denote a signal and D € R™*? be a dictionary.
The set of minimal ¢! representers of zg w.r.t. D is

Zp := argmin ||z]]1.
Dz=zg

Remark (Uniqueness).

For a dictionary in generic position, Z,y = {z;} is a singleton.
For practical dictionaries (e.g. redundant wavelets) it is not.
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Sampling rates

Remark (A necessary condition for coefficient recovery).

Depending on the application we may solve P} or Pg.
Recovering zo s.t. o = Dzo is only possible if Zp = {z0}-

Proposition (Descent cone of the gauge).

Let xo denote a vector with minimal I* representers Z, . Then

Dr(gp,x0) = D - DA(|| - ||l1,201)  for all zp € Zp.




Sampling rates

Theorem 9 (Sampling rates for coefficients (noisy)).
Let zo € R? be a coefficient and y = ADzy + e. Then if

Zn ={z0} and m >mo:= (WA(D - Da(]] - |l1,20)) + u)2 +1,

any solution Z of (PY) satisfies with probability > 1 — g v /2

21
Amin (D, DA (]| - lI1, 20)) (Vm =1 — v/mo — 1)

lzo — 2|2 <
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Theorem 9 (Sampling rates for coefficients (noisy)).
Let zo € R? be a coefficient and y = ADzy + e. Then if
Zpn ={20} and m>mo:= (wa(D Da(||-|l1,20)) +u)® +1,

any solution Z of (PY) satisfies with probability > 1 — e~v/2

2n
Amin (D, DA(|| - [l1,20))(vV/m =1 — v/mo — 1)

lzo — 2|2 <

Theorem 10 (Sampling rates for signal).
Let o € R™ be a signal and y = Azo + e. Then for m > mo any solution & of

mingp(z) st [Az—yl2 <.

satisfies:
2n

vVm—1—+vmo—1

llzo — |2 <




Sampling rates

Conclusion
Sampling rates coefficients = sampling rate signal.
Stability to noise is different.

Critical quantity = conic mean width of a linearly transformed cone

wa (D - Da(ll - |1, 20))-




Sampling rates

Uniform recovery VS non uniform recovery

Compressed sensing started with the Restricted Isometry Property leading to:
All s-sparse vectors are recovered with probability X if m > mpgrp.
Here:

A specific vector zg is recovered with probability Y if m > m.,.

The Restricted Isometry Property...

@ RIP = far stronger statement.
@ RIP = optimal for orthogonal D, super pessimistic otherwise.

@ RIP = useless in 99% of the practical cases.




Upper bounds on the conic Gaussian width

Understanding the descent cone

A cryptic quantity: wa (D - Da(]| - |1, 2))-

€3

—eg
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Upper bounds on the conic Gaussian width

Understanding the descent cone

A cryptic quantity: wa (D - Da(]| - |1, 2))-

DA(|l - Il 20) = cone(z & [|z[l1es, 1 < i < d)
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Upper bounds on the conic Gaussian width

Theorem 11 (Orthogonal decomposition).
C = DDx(|| - |l1,20) =Cr @ Cr
with for any z € ri(Z,1), 5 = ||z||o:
Cr, = span(zo — § - sign(z;)d;)

Cr = cone(r,i € %) with rf = Mot (Dz £ 5 - sign(z)d;)




Upper bounds on the conic Gaussian width

Definition 12 (Circumangle).
Let C C R"™ denote a closed convex cone.

The circumangle «(C) is defined by:
inf  (z,0)

cos(a) = sup
16]l2=1*€C;llz[l2=1




Upper bounds on the conic Gaussian width

Definition 12 (Circumangle).

Let C C R"™ denote a closed convex cone.
The circumangle «(C) is defined by:

cos(a) = su inf x,0
(@) Ho||221w607|\w||2=1< )

Theorem 13 (Width of polyhedral o cones).

Let Cy' denote the set of k-polyhedral o cones in R™.
Then

sup wa(C) = O(tan(a)+/21log(k)).
Cecy




Upper bounds on the conic Gaussian width

Theorem 14 (An upper bound on the sampling rate).

Let a = circumangle of Cr. We have:
wa (Da(gp, x0)) < 5+ C tan(a)? log(d)
The critical number of measurements is
mo = 5+ tan(a)? log(d).

Computing o = convex problem!




Upper bounds on the conic Gaussian width

Theorem 14 (An upper bound on the sampling rate).
Let a = circumangle of Cr. We have:

wa (Da(gp, x0)) < 5+ C tan(a)? log(d)
The critical number of measurements is
mo = 5+ tan(a)? log(d).

Computing o = convex problem!
Ongoing...

Show that the previous bound:
@ recovers all the best existing results.

@ allows to establish new ones (super-resolution, wavelet frames).




What about total gradient variation?

Example with 1D total variation
Let y = Axo + e, with o = 0. Consider:

min [ Les st [|[Az —yl2 <7 (TVip)

where (Lz); = xi41 — x;. Then (T'Vip) is equivalent to

min lz|l1 s:t. ||[ADz —ylla <n with D =[di,...,dn1]
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What about total gradient variation?

Early remarks

d;,d;
@ Coherence(D) = max _ldi dy)l ~ 1.
i |dill2 - [|djll2

@ Usual theories cannot work: sparsity is not the right complexity measure!

1 ir
0.8 r
0.5
0.6
0
04
-0.5
0.2 |
-1 0
0 50 100 150 0 50 100 150
(a) mo ~ 5. (b) mg very large!

Figure: DIFFERENT 2-SPARSE VECTORS HAVE VERY DIFFERENT COMPLEXITIES.




What about total gradient variation?

Theorem 15 (1D TV and the circumangle).

Zo: piecewise constant with s jumps with signs (or) at (pr)i<k<s-

Then
/' n
mo <s+C i log(n)‘r”/2

1
= e @ktt — o)/ (e — pr)

L = harmonic mean of the distances between jumps of opposite signs.

With
L

Similar conclusions in:

Francesco Ortelli and Sara van de Geer.
Oracle inequalities for image denoising with total variation regularization.
Information&Inference, 2019




Conclusion

Contributions

v

X X S N

Sampling rates for the synthesis problem (coefficient and signal).
Decent upper-bounds for the conic width of linearly transformed cones.
Dissected the descent cone of the £1-ball.

Quantities are still partly cryptic.

Case by case study of practical dictionaries is technical.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp.
Living on the edge: Phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA, 3(3):224-294, 2014

Claire Boyer, Jonas Kahn, Maximilian Mirz, and Pierre Weiss.
Sampling rates for Zl»synthesisA
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Thanks for your attention




