Sparsity, Feature Selection & the Shapley-Folkman Theorem.

Alexandre d'Aspremont,

CNRS & D.I., École Normale Supérieure.

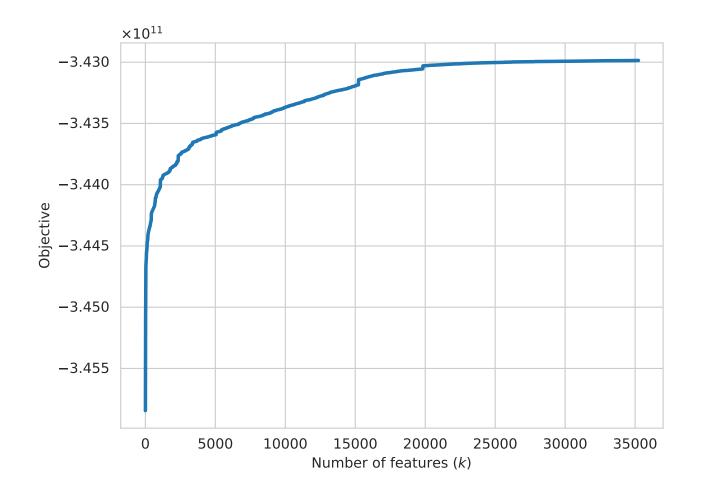
With Armin Askari, Laurent El Ghaoui (UC Berkeley) and Quentin Rebjock (EPFL) Feature Selection.

- Reduce number of variables while preserving classification performance.
- Often improves test performance, especially when samples are scarce.
- Helps interpretation.

Classical examples: LASSO, ℓ_1 -logistic regression, RFE-SVM, . . .

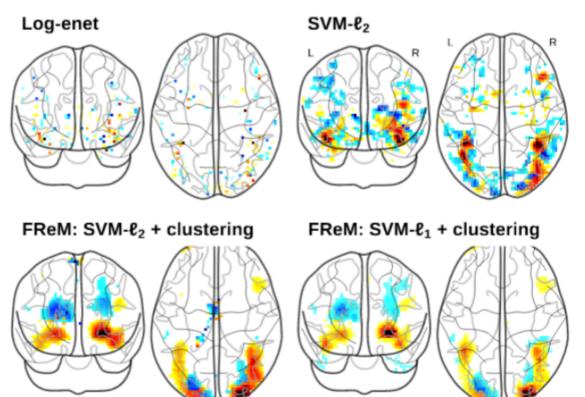
Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs control). 35238 genes, 2695 examples. [Lachmann et al., 2018]



Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ, EEF1A1, MT-CO1, HBA2, HBB, HBA1.

Applications. Mapping brain activity by fMRI.

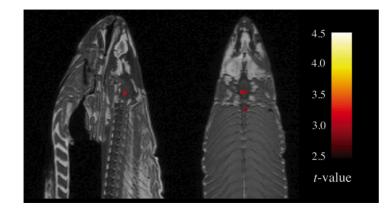


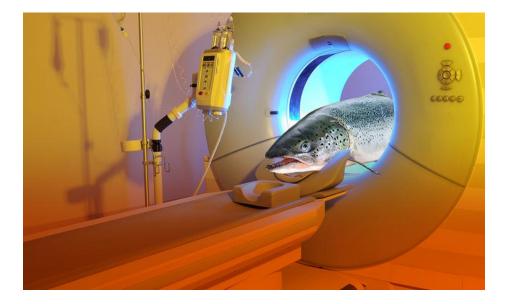
Encoding and decoding models of cognition

From PARIETAL team at INRIA.

fMRI. Many voxels, very few samples leads to false discoveries.

Scanning Dead Salmon in fMRI Machine Highlights Risk of Red Herrings





Wired article on Bennett et al. "Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction" Journal of Serendipitous and Unexpected Results, 2010.

Introduction: linear models

Linear models. Select features from large weights w.

- LASSO solves $\min_{w} \|Xw y\|_{2}^{2} + \lambda \|w\|_{1}$ with linear prediction given by $w^{T}x$.
- Linear SVM, solves $\min_{w} \sum_{i} \max\{0, 1 y_i w^T x_i\} + \lambda ||w||_2^2$ with linear classification rule $\operatorname{sign}(w^T x)$.

In practice.

- Relatively high complexity on very large-scale data sets.
- Recovery results require **uncorrelated features** (incoherence, RIP, etc.).
- Cheaper featurewise methods (ANOVA, TF-IDF, etc.) have relatively poor performance.

Sparse Naive Bayes

- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

$$\log \operatorname{Prob}(x \mid C_{\pm}) = x^{\top} \log \theta^{\pm} + \log \left(\frac{\left(\sum_{j=1}^{m} x_{j}\right)!}{\prod_{j=1}^{m} x_{j}!} \right).$$

Training by maximum likelihood

$$(\theta_*^+, \theta_*^-) = \operatorname*{argmax}_{\substack{\mathbf{1}^\top \theta^+ = \mathbf{1}^\top \theta^- = 1\\ \theta^+, \theta^- \in [0, 1]^m}} f^{+\top} \log \theta^+ + f^{-\top} \log \theta^-$$

where f^{\pm} are sum of positive (resp. negative) feature vectors. Linear classification rule: for a given test point $x \in \mathbb{R}^m$, set

$$\hat{y}(x) = \operatorname{sign}(v + w^{\top}x),$$

where

$$w \triangleq \log \theta_*^+ - \log \theta_*^-$$
 and $v \triangleq \log \operatorname{Prob}(C_+) - \log \operatorname{Prob}(C_-),$

Sparse Naive Bayse

Naive Feature Selection. Make $w \triangleq \log \theta_*^+ - \log \theta_*^-$ sparse.

Solve

$$\begin{array}{ll} (\theta^+_*, \theta^-_*) = & \arg\max & f^{+\top} \log \theta^+ + f^{-\top} \log \theta^- \\ & \text{subject to} & \|\theta^+ - \theta^-\|_0 \le k \\ & \mathbf{1}^{\top} \theta^+ = \mathbf{1}^{\top} \theta^- = 1 \\ & \theta^+, \theta^+ \ge 0 \end{array}$$
 (SMNB)

where $k \ge 0$ is a target number of features. Features for which $\theta_i^+ = \theta_i^-$ can be discarded.

Nonconvex problem.

- Convex relaxation?
- Approximation bounds?

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let $\phi(k)$ be the optimal value of (SMNB). Then $\phi(k) \leq \psi(k)$, where $\psi(k)$ is the optimal value of the following one-dimensional convex optimization problem

$$\psi(k) := C + \min_{\alpha \in [0,1]} s_k(h(\alpha)), \qquad (USMNB)$$

where C is a constant, $s_k(\cdot)$ is the sum of the top k entries of its vector argument, and for $\alpha \in (0, 1)$,

$$h(\alpha) := f_+ \circ \log f_+ + f_- \circ \log f_- - (f_+ + f_-) \circ \log(f_+ + f_-) - f_+ \log \alpha - f_- \log(1 - \alpha).$$

Solved by bisection, linear complexity $O(n + k \log k)$. Approximation bounds?

Alex d'Aspremont

SFO, March 2021. 10/35

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

Shapley-Folkman Theorem

Minkowski sum. Given sets $X, Y \subset \mathbb{R}^d$, we have

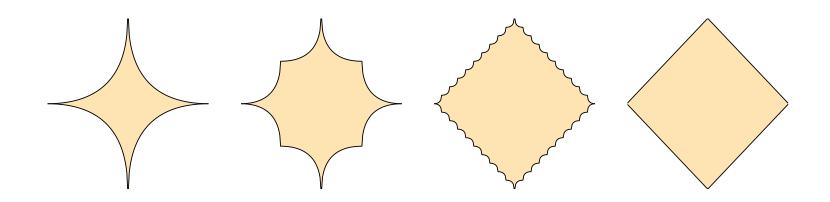
$$X + Y = \{x + y : x \in X, y \in Y\}$$

(CGAL User and Reference Manual)

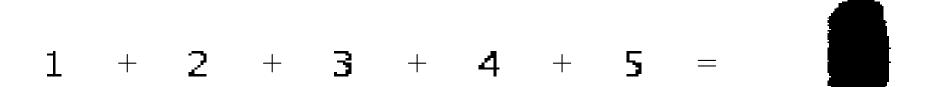
Convex hull. Given subsets $V_i \subset \mathbb{R}^d$, we have

$$\mathbf{Co}\left(\sum_{i}V_{i}
ight)=\sum_{i}\mathbf{Co}(V_{i})$$

Shapley-Folkman Theorem



The $\ell_{1/2}$ ball, Minkowsi average of two and ten balls, convex hull.



Minkowsi sum of five first digits (obtained by sampling).

Shapley-Folkman Theorem [Starr, 1969]

Suppose $V_i \subset \mathbb{R}^d$, $i = 1, \ldots, n$, and

$$x \in \mathbf{Co}\left(\sum_{i=1}^{n} V_i\right) = \sum_{i=1}^{n} \mathbf{Co}(V_i)$$

then

$$x \in \sum_{\mathcal{S}} \mathbf{Co}(V_i) + \sum_{[1,n] \setminus \mathcal{S}} V_i$$

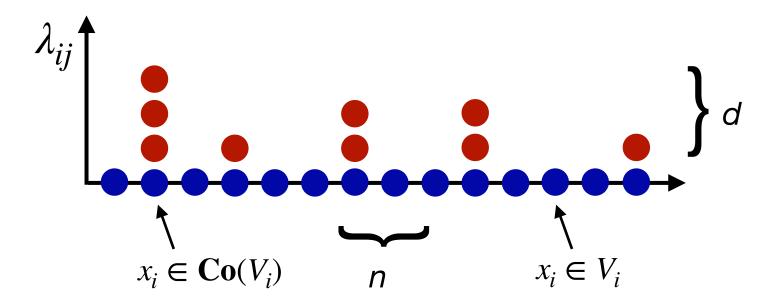
for some $|\mathcal{S}| \leq d$.

Shapley-Folkman Theorem

Proof sketch. Write $x \in \sum_{i=1}^{n} \mathbf{Co}(V_i)$, or

$$\begin{pmatrix} x \\ \mathbf{1}_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^{d+1} \lambda_{ij} \begin{pmatrix} v_{ij} \\ e_i \end{pmatrix}, \quad \text{for } \lambda \ge 0,$$

Conic Carathéodory then yields representation with at most n + d nonzero coefficients. Use a pigeonhole argument



Number of nonzero λ_{ij} controls gap with convex hull.

Shapley-Folkman: geometric consequences

Consequences.

If the sets $V_i \subset \mathbb{R}^d$ are uniformly bounded with $rad(V_i) \leq R$, then

$$d_H\left(\frac{\sum_{i=1}^n V_i}{n}, \mathbf{Co}\left(\frac{\sum_{i=1}^n V_i}{n}\right)\right) \le R\frac{\sqrt{\min\{n, d\}}}{n}$$

where $\operatorname{rad}(V) = \inf_{x \in V} \sup_{y \in V} ||x - y||$.

 \blacksquare In particular, when d is fixed and $n \to \infty$

$$\left(\frac{\sum_{i=1}^{n} V_i}{n}\right) \to \mathbf{Co}\left(\frac{\sum_{i=1}^{n} V_i}{n}\right)$$

in the Hausdorff metric with rate O(1/n).

Holds for many other nonconvexity measures [Fradelizi et al., 2017].

Outline

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

Nonconvex Optimization

Separable nonconvex problem. Solve

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} f_i(x_i) \\ \text{subject to} & Ax \leq b, \end{array} \tag{P}$$

in the variables $x_i \in \mathbb{R}^{d_i}$ with $d = \sum_{i=1}^n d_i$, where f_i are lower semicontinuous and $A \in \mathbb{R}^{m \times d}$.

Take the dual twice to form a **convex relaxation**,

minimize
$$\sum_{i=1}^{n} f_i^{**}(x_i)$$
 (CoP)
subject to $Ax \le b$

in the variables $x_i \in \mathbb{R}^{d_i}$.

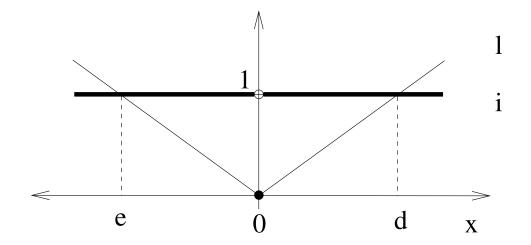
Nonconvex Optimization

Convex envelope. Biconjugate f^{**} satisfies $epi(f^{**}) = \overline{Co(epi(f))}$, which means that

 $f^{**}(x)$ and f(x) match at extreme points of $epi(f^{**})$.

Define lack of convexity as $\rho(f) \triangleq \sup_{x \in \operatorname{dom}(f)} \{f(x) - f^{**}(x)\}.$

Example.



The l_1 norm is the convex envelope of Card(x) in [-1, 1].

Nonconvex Optimization

Epigraph & duality gap. Define

$$\mathcal{F}_{i} = \left\{ (f_{i}^{**}(x_{i}), A_{i}x_{i}) : x_{i} \in \mathbb{R}^{d_{i}} \right\} + \mathbb{R}_{+}^{m+1}$$

where $A_i \in \mathbb{R}^{m \times d_i}$ is the i^{th} block of A.

• The epigraph \mathcal{G}_r^{**} can be written as a **Minkowski sum** of \mathcal{F}_i

$$\mathcal{G}_{r}^{**} = \sum_{i=1}^{n} \mathcal{F}_{i} + (0, -b) + \mathbb{R}_{+}^{m+1}$$

Shapley-Folkman at $x \in \mathcal{G}_r^{**}$ shows $f^{**}(x_i) = f(x_i)$ for all but at most m+1 terms in the objective.

As $n \to \infty$, with $m/n \to 0$, the epigraph \mathcal{G}_r gets closer to \mathcal{G}_r^{**} , i.e. closer to being convex, and the duality gap becomes negligible.

Bound on duality gap

General result. Consider the separable nonconvex problem

$$h_P(u) := \min \sum_{i=1}^n f_i(x_i)$$

s.t.
$$\sum_{i=1}^n g_i(x_i) \le b + u$$
 (P)

in the variables $x_i \in \mathbb{R}^{d_i}$, with perturbation parameter $u \in \mathbb{R}^m$.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f_i, g_{ji} in problem (P) satisfy assumption (...) for i = 1, ..., n, j = 1, ..., m. Let

$$\bar{p}_j = (m+1) \max_i \rho(g_{ji}), \quad \text{for } j = 1, \dots, m$$

then

$$h_P(\bar{p})^{**} \le h_P(\bar{p}) \le h_P(0)^{**} + (m+1) \max_i \rho(f_i).$$

where $h_P(u)^{**}$ is the optimal value of the dual to (P).

Duality gap bound. Sparse naive Bayes reads

$$h_P(u) = \min_{q,r} -f^{+\top} \log q - f^{-\top} \log r$$

subject to
$$\mathbf{1}^{\top} q = 1 + u_1,$$

$$\mathbf{1}^{\top} r = 1 + u_2,$$

$$\sum_{i=1}^m \mathbf{1}_{q_i \neq r_i} \leq k + u_3$$

in the variables $q, r \in [0, 1]^m$, where $u \in \mathbb{R}^3$. There are three constraints, two of them convex, which means $\bar{p} = (0, 0, 4)$.

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let $\phi(k)$ be the optimal value of (SMNB) and $\psi(k)$ that of the convex relaxation (USMNB). We have

$$\psi(k-4) \le \phi(k) \le \psi(k),$$

for $k \geq 4$.

Primalization is tricky, cf. paper. . .

Outline

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

Problems with low rank data and sparsity constraints

$$p_{\rm con}(k) \triangleq \min_{\|w\|_0 \le k} f(Xw) + \frac{\gamma}{2} \|w\|_2^2, \qquad (P-{\rm CON})$$

in the variable $w \in \mathbb{R}^m$, where $X \in \mathbb{R}^{n \times m}$ is low rank, $y \in \mathbb{R}^n, \gamma > 0$ and $k \ge 0$.

Penalized formulation

$$p_{\text{pen}}(\lambda) \triangleq \min_{w} f(Xw) + \frac{\gamma}{2} \|w\|_{2}^{2} + \lambda \|w\|_{0}$$
 (P-PEN)

in the variable $w \in \mathbb{R}^m$, where $\lambda > 0$.

Key examples: LASSO, ℓ_0 -constrained logistic regression.

The **bidual** of (P-CON) is written

$$p_{\text{con}}^{**}(k) = \min_{v,u \in [0,1]^m} f(XD(u)v) + \frac{\gamma}{2}v^{\top}D(u)v : \mathbf{1}^{\top}u \le k$$
 (BD-CON)

Non-convex, but setting $\tilde{v} = D(u)v$ equivalent to

$$p_{\mathrm{con}}^{**}(k) = \min_{\tilde{v}, u \in [0,1]^m} f(X\tilde{v}) + \frac{\gamma}{2} \tilde{v} D(u)^{\dagger} \tilde{v} : \mathbf{1}^\top u \le k$$
(1)

in the variables $\tilde{v}, u \in \mathbb{R}^m$, where $\tilde{v}^\top D(u)^\dagger \tilde{v}$ is jointly convex in (\tilde{v}, u) (second order cone constraint).

This is the **interval relaxation** of the ℓ_0 sparsity constraint.

Proposition

Gap Bounds. Suppose $X = U_r \Sigma_r V_r^{\top}$ is a compact, rank-r SVD decomposition of X. From a solution (v^*, u^*) of (BD-CON) with objective value t^* , with probability one, we can construct a point with at most k + r + 2 nonzero coefficients and objective value OPT satisfying

$$p_{\rm con}(k+r+2) \le OPT \le p_{\rm con}^{**}(k) \le p_{\rm con}(k)$$
 (Gap-Bound)

by solving a linear program written

minimize
$$c^{\top} u$$

subject to $f(U_r z^*) + \sum_{i=1}^m u_i \frac{\gamma}{2} {v_i^*}^2 = t^*$
 $\sum_{\substack{i=1 \ m}}^m u_i \le k$
 $\sum_{\substack{i=1 \ m}}^m u_i \ell_i v_i^* = z^*$
 $u \in [0, 1]^m$
(2)

in the variable $u \in \mathbb{R}^m$ where $c \sim \mathcal{N}(0, I_m)$, $z^* = \Sigma_r V_r^\top D(u^*) v^*$.

Duality Gap Bounds

LASSO vs. interval.

Optimality

- Interval: only need low rank
- LASSO: need RIP, incoherence

Support Recovery

- Interval: need low rank + RIP
- LASSO: need RIP, incoherence

Both have similar computational cost.

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

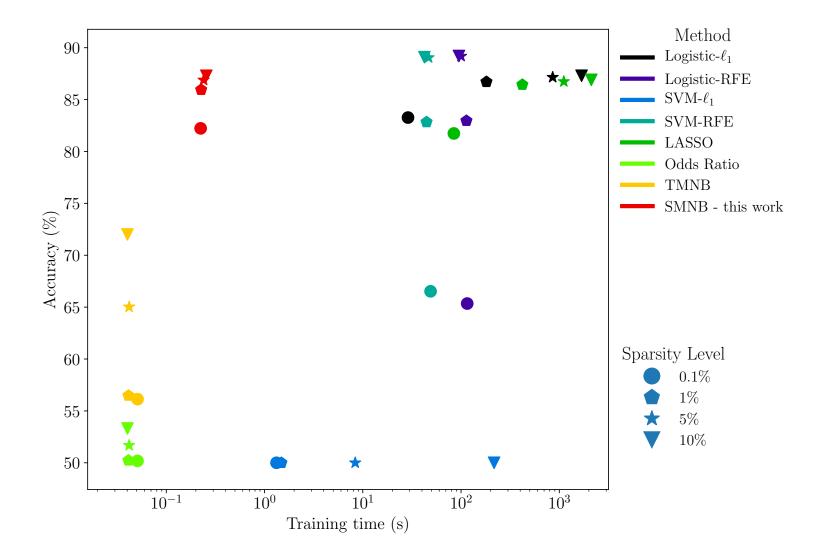
Data.

FEATURE VECTORS	Amazon	IMDB	TWITTER	MPQA	SST2
Count Vector	$31,\!666$	$103,\!124$	$273,\!779$	6,208	$16,\!599$
TF-IDF	$31,\!666$	$103,\!124$	$273,\!779$	6,208	$16,\!599$
TF-IDF WRD BIGRAM	$870,\!536$	$8,\!950,\!169$	$12,\!082,\!555$	$27,\!603$	$227,\!012$
TF-IDF CHAR BIGRAM	$25,\!019$	$48,\!420$	$17,\!812$	4838	7762

Number of features in text data sets used below.

	Amazon	IMDB	TWITTER	MPQA	SST2
Count Vector	0.043	0.22	1.15	0.0082	0.037
TF-IDF	0.033	0.16	0.89	0.0080	0.027
TF-IDF WRD BIGRAM	0.68	9.38	13.25	0.024	0.21
TF-IDF CHAR BIGRAM	0.076	0.47	4.07	0.0084	0.082

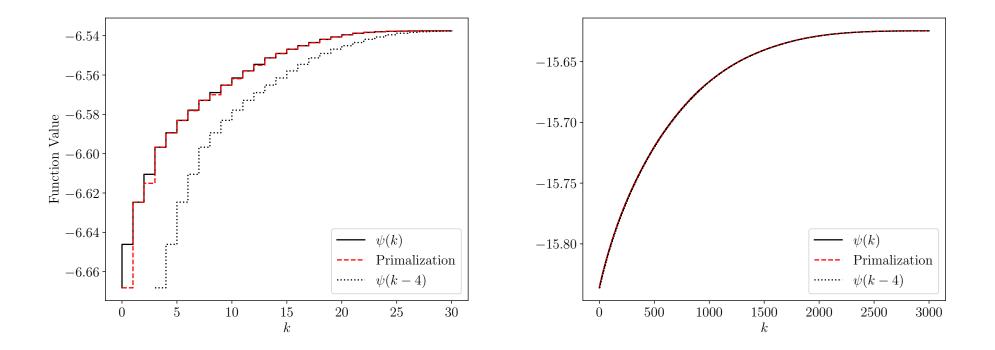
Average run time (seconds, plain Python on CPU).



Accuracy versus run time on IMDB/Count Vector, MNB in stage two.

Alex d'Aspremont

SFO, March 2021. 30/35



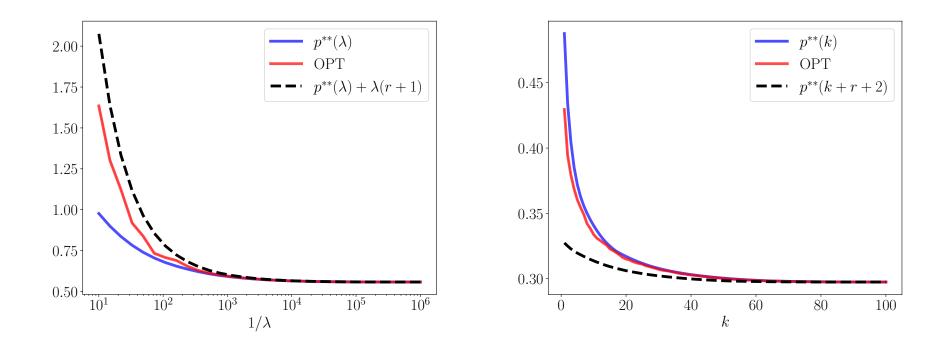
Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000 (right panel), showing that the duality gap quickly closes as m or k increase.

Alex d'Aspremont

SFO, March 2021. 31/35

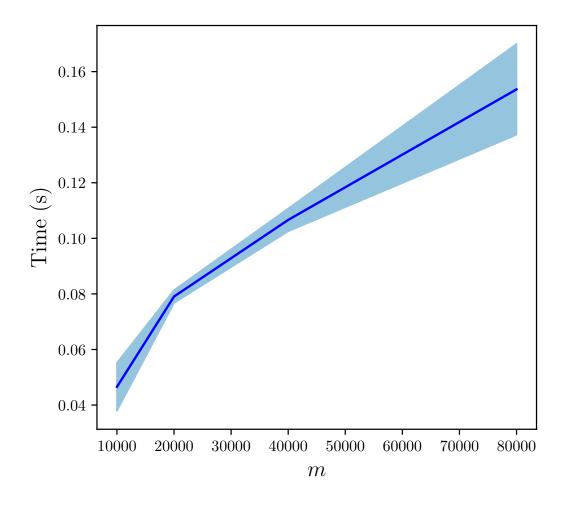
LASSO and ℓ_0 -Logistic Regression

Synthetic example with $X \in \mathbb{R}^{1000 \times 100}$ and rank 10.



Left: Duality gap for linear regression with a ℓ_0 penalty.

Right: Duality gap for ℓ_0 constrained logistic regression.



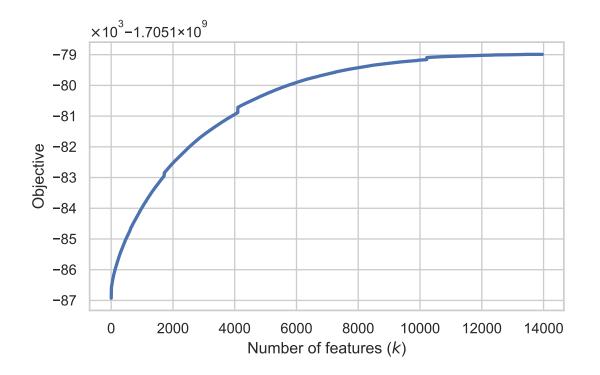
Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with fixed ratio k/m, empirically showing (sub-) linear complexity.

Alex d'Aspremont

SFO, March 2021. 33/35

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

- Preprocessing (NaN, encoding categorical features) takes 50 minutes.
- Computing f^+ and f^- takes 20 minutes.
- Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.



Standard workstation, plain Python on CPU.

For naive Bayes, we get sparsity almost for free.

- Linear complexity.
- Nearly tight convex relaxation.
- Feature selection performance comparable to LASSO or ℓ_1 logistic regression, but NFS is $100 \times$ faster. . .
- Requires no RIP assumption (only the naive one behind NB).
- Extends to LASSO, ℓ_0 -logistic regression.

Papers: ArXiv:1905.09884. AISTATS 2020 and ArXiv:2102.06742.

Python code: https://github.com/aspremon/NaiveFeatureSelection

References

Ivar Ekeland and Roger Temam. Convex analysis and variational problems. SIAM, 1999.

Matthieu Fradelizi, Mokshay Madiman, Arnaud Marsiglietti, and Artem Zvavitch. The convexification effect of minkowski summation. *Preprint*, 2017.

Alexander Lachmann, Denis Torre, Alexandra B Keenan, Kathleen M Jagodnik, Hoyjin J Lee, Lily Wang, Moshe C Silverstein, and Avi Ma'ayan. Massive mining of publicly available rna-seq data from human and mouse. *Nature communications*, 9(1):1366, 2018.

Ross M Starr. Quasi-equilibria in markets with non-convex preferences. Econometrica: journal of the Econometric Society, pages 25-38, 1969.