# Sparsity, Feature Selection & the Shapley-Folkman Theorem.

Alexandre d'Aspremont,

CNRS & D.I., École Normale Supérieure.

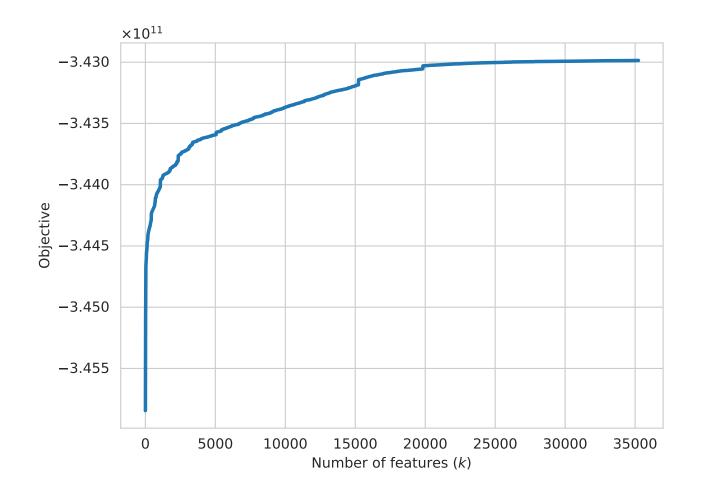
With Armin Askari, Laurent El Ghaoui (UC Berkeley) and Quentin Rebjock (EPFL) Feature Selection.

- Reduce number of variables while preserving classification performance.
- Often improves test performance, especially when samples are scarce.
- Helps interpretation.

**Classical examples:** LASSO,  $\ell_1$ -logistic regression, RFE-SVM, . . .

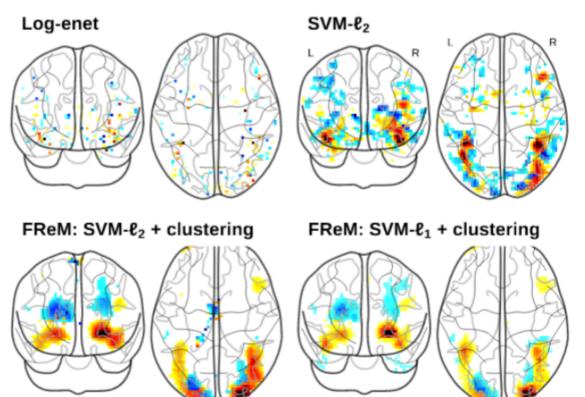
#### Introduction: feature selection

**RNA classification.** Find genes which best discriminate cell type (lung cancer vs control). 35238 genes, 2695 examples. [Lachmann et al., 2018]



# Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ, EEF1A1, MT-CO1, HBA2, HBB, HBA1.

Applications. Mapping brain activity by fMRI.



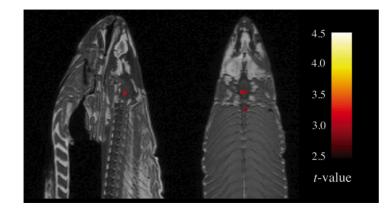
Encoding and decoding models of cognition

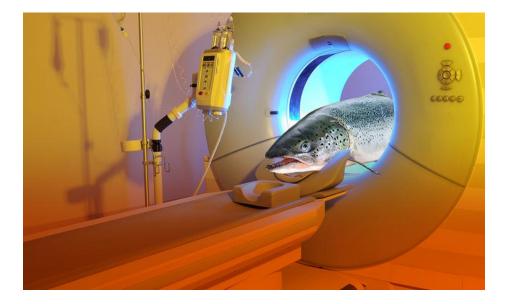
From PARIETAL team at INRIA.

fMRI. Many voxels, very few samples leads to false discoveries.



#### Scanning Dead Salmon in fMRI Machine Highlights Risk of Red Herrings





*Wired* article on Bennett et al. "Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction" Journal of Serendipitous and Unexpected Results, 2010.

#### Introduction: linear models

**Linear models.** Select features from large weights w.

- LASSO solves  $\min_{w} \|Xw y\|_{2}^{2} + \lambda \|w\|_{1}$  with linear prediction given by  $w^{T}x$ .
- Linear SVM, solves  $\min_{w} \sum_{i} \max\{0, 1 y_i w^T x_i\} + \lambda ||w||_2^2$  with linear classification rule  $\operatorname{sign}(w^T x)$ .

#### In practice.

- Relatively high complexity on very large-scale data sets.
- Recovery results require **uncorrelated features** (incoherence, RIP, etc.).
- Cheaper featurewise methods (ANOVA, TF-IDF, etc.) have relatively poor performance.

#### Sparse Naive Bayes

- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

#### **Multinomial Naive Bayse**

Multinomial Naive Bayse. In the multinomial model

$$\log \operatorname{Prob}(x \mid C_{\pm}) = x^{\top} \log \theta^{\pm} + \log \left( \frac{\left(\sum_{j=1}^{m} x_{j}\right)!}{\prod_{j=1}^{m} x_{j}!} \right).$$

Training by maximum likelihood

$$(\theta_*^+, \theta_*^-) = \operatorname*{argmax}_{\substack{\mathbf{1}^\top \theta^+ = \mathbf{1}^\top \theta^- = 1\\ \theta^+, \theta^- \in [0, 1]^m}} f^{+\top} \log \theta^+ + f^{-\top} \log \theta^-$$

where  $f^{\pm}$  are sum of positive (resp. negative) feature vectors. Linear classification rule: for a given test point  $x \in \mathbb{R}^m$ , set

$$\hat{y}(x) = \operatorname{sign}(v + w^{\top}x),$$

where

$$w \triangleq \log \theta_*^+ - \log \theta_*^-$$
 and  $v \triangleq \log \operatorname{Prob}(C_+) - \log \operatorname{Prob}(C_-),$ 

#### **Sparse Naive Bayse**

**Naive Feature Selection.** Make  $w \triangleq \log \theta_*^+ - \log \theta_*^-$  sparse.

Solve

$$\begin{array}{ll} (\theta^+_*, \theta^-_*) = & \arg\max & f^{+\top} \log \theta^+ + f^{-\top} \log \theta^- \\ & \text{subject to} & \|\theta^+ - \theta^-\|_0 \le k \\ & \mathbf{1}^{\top} \theta^+ = \mathbf{1}^{\top} \theta^- = 1 \\ & \theta^+, \theta^+ \ge 0 \end{array}$$
 (SMNB)

where  $k \ge 0$  is a target number of features. Features for which  $\theta_i^+ = \theta_i^-$  can be discarded.

Nonconvex problem.

- Convex relaxation?
- Approximation bounds?

#### Convex Relaxation. The dual is very simple.

#### Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let  $\phi(k)$  be the optimal value of (SMNB). Then  $\phi(k) \leq \psi(k)$ , where  $\psi(k)$  is the optimal value of the following one-dimensional convex optimization problem

$$\psi(k) := C + \min_{\alpha \in [0,1]} s_k(h(\alpha)), \qquad (USMNB)$$

where C is a constant,  $s_k(\cdot)$  is the sum of the top k entries of its vector argument, and for  $\alpha \in (0, 1)$ ,

$$h(\alpha) := f_+ \circ \log f_+ + f_- \circ \log f_- - (f_+ + f_-) \circ \log(f_+ + f_-) - f_+ \log \alpha - f_- \log(1 - \alpha).$$

Solved by bisection, linear complexity  $O(n + k \log k)$ . Approximation bounds?

#### Alex d'Aspremont

SFO, March 2021. 10/35

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

#### **Shapley-Folkman Theorem**

**Minkowski sum.** Given sets  $X, Y \subset \mathbb{R}^d$ , we have

$$X + Y = \{x + y : x \in X, y \in Y\}$$

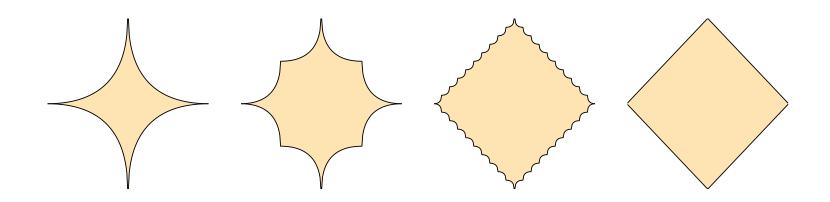


(CGAL User and Reference Manual)

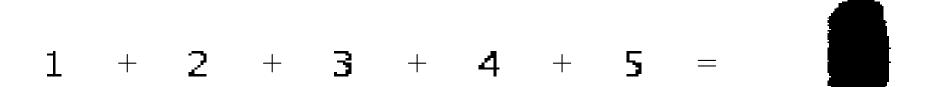
**Convex hull.** Given subsets  $V_i \subset \mathbb{R}^d$ , we have

$$\mathbf{Co}\left(\sum_{i}V_{i}
ight)=\sum_{i}\mathbf{Co}(V_{i})$$

#### **Shapley-Folkman Theorem**



The  $\ell_{1/2}$  ball, Minkowsi average of two and ten balls, convex hull.



Minkowsi sum of five first digits (obtained by sampling).

#### Shapley-Folkman Theorem [Starr, 1969]

Suppose  $V_i \subset \mathbb{R}^d$ ,  $i = 1, \ldots, n$ , and

$$x \in \mathbf{Co}\left(\sum_{i=1}^{n} V_i\right) = \sum_{i=1}^{n} \mathbf{Co}(V_i)$$

then

$$x \in \sum_{\mathcal{S}} \mathbf{Co}(V_i) + \sum_{[1,n] \setminus \mathcal{S}} V_i$$

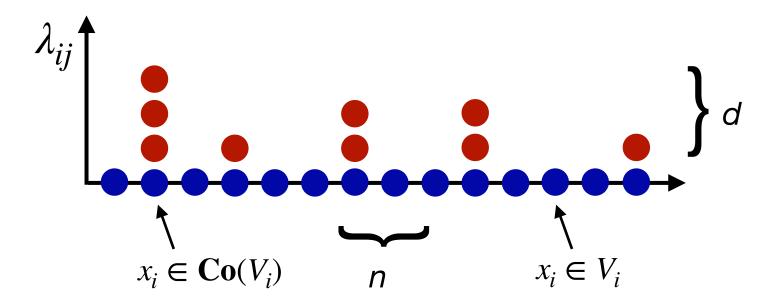
for some  $|\mathcal{S}| \leq d$ .

#### **Shapley-Folkman Theorem**

**Proof sketch.** Write  $x \in \sum_{i=1}^{n} \mathbf{Co}(V_i)$ , or

$$\begin{pmatrix} x \\ \mathbf{1}_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^{d+1} \lambda_{ij} \begin{pmatrix} v_{ij} \\ e_i \end{pmatrix}, \quad \text{for } \lambda \ge 0,$$

Conic Carathéodory then yields representation with at most n + d nonzero coefficients. Use a pigeonhole argument



Number of nonzero  $\lambda_{ij}$  controls gap with convex hull.

# Shapley-Folkman: geometric consequences

#### **Consequences.**

If the sets  $V_i \subset \mathbb{R}^d$  are uniformly bounded with  $rad(V_i) \leq R$ , then

$$d_H\left(\frac{\sum_{i=1}^n V_i}{n}, \mathbf{Co}\left(\frac{\sum_{i=1}^n V_i}{n}\right)\right) \le R\frac{\sqrt{\min\{n, d\}}}{n}$$

where  $\operatorname{rad}(V) = \inf_{x \in V} \sup_{y \in V} ||x - y||$ .

 $\blacksquare$  In particular, when d is fixed and  $n \to \infty$ 

$$\left(\frac{\sum_{i=1}^{n} V_i}{n}\right) \to \mathbf{Co}\left(\frac{\sum_{i=1}^{n} V_i}{n}\right)$$

in the Hausdorff metric with rate O(1/n).

Holds for many other nonconvexity measures [Fradelizi et al., 2017].

# Outline

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

#### **Nonconvex Optimization**

#### Separable nonconvex problem. Solve

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} f_i(x_i) \\ \text{subject to} & Ax \leq b, \end{array} \tag{P}$$

in the variables  $x_i \in \mathbb{R}^{d_i}$  with  $d = \sum_{i=1}^n d_i$ , where  $f_i$  are lower semicontinuous and  $A \in \mathbb{R}^{m \times d}$ .

Take the dual twice to form a **convex relaxation**,

minimize 
$$\sum_{i=1}^{n} f_i^{**}(x_i)$$
 (CoP)  
subject to  $Ax \le b$ 

in the variables  $x_i \in \mathbb{R}^{d_i}$ .

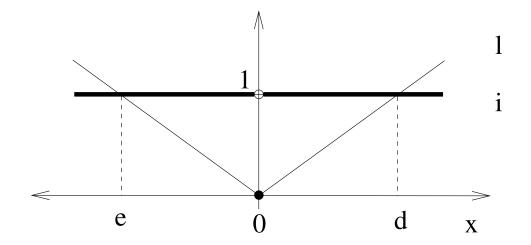
#### **Nonconvex Optimization**

**Convex envelope.** Biconjugate  $f^{**}$  satisfies  $epi(f^{**}) = \overline{Co(epi(f))}$ , which means that

 $f^{**}(x)$  and f(x) match at extreme points of  $epi(f^{**})$ .

Define lack of convexity as  $\rho(f) \triangleq \sup_{x \in \operatorname{dom}(f)} \{f(x) - f^{**}(x)\}.$ 

Example.



The  $l_1$  norm is the convex envelope of Card(x) in [-1, 1].

#### **Nonconvex Optimization**

#### Epigraph & duality gap. Define

$$\mathcal{F}_{i} = \left\{ (f_{i}^{**}(x_{i}), A_{i}x_{i}) : x_{i} \in \mathbb{R}^{d_{i}} \right\} + \mathbb{R}_{+}^{m+1}$$

where  $A_i \in \mathbb{R}^{m \times d_i}$  is the  $i^{th}$  block of A.

• The epigraph  $\mathcal{G}_r^{**}$  can be written as a **Minkowski sum** of  $\mathcal{F}_i$ 

$$\mathcal{G}_{r}^{**} = \sum_{i=1}^{n} \mathcal{F}_{i} + (0, -b) + \mathbb{R}_{+}^{m+1}$$

Shapley-Folkman at  $x \in \mathcal{G}_r^{**}$  shows  $f^{**}(x_i) = f(x_i)$  for all but at most m+1 terms in the objective.

As  $n \to \infty$ , with  $m/n \to 0$ , the epigraph  $\mathcal{G}_r$  gets closer to  $\mathcal{G}_r^{**}$ , i.e. closer to being convex, and the duality gap becomes negligible.

#### Bound on duality gap

**General result.** Consider the separable nonconvex problem

$$h_P(u) := \min \sum_{i=1}^n f_i(x_i)$$
  
s.t. 
$$\sum_{i=1}^n g_i(x_i) \le b + u$$
 (P)

in the variables  $x_i \in \mathbb{R}^{d_i}$ , with perturbation parameter  $u \in \mathbb{R}^m$ .

#### Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions  $f_i, g_{ji}$  in problem (P) satisfy assumption (...) for i = 1, ..., n, j = 1, ..., m. Let

$$\bar{p}_j = (m+1) \max_i \rho(g_{ji}), \quad \text{for } j = 1, \dots, m$$

then

$$h_P(\bar{p})^{**} \le h_P(\bar{p}) \le h_P(0)^{**} + (m+1) \max_i \rho(f_i).$$

where  $h_P(u)^{**}$  is the optimal value of the dual to (P).

Duality gap bound. Sparse naive Bayes reads

$$h_P(u) = \min_{q,r} -f^{+\top} \log q - f^{-\top} \log r$$
  
subject to 
$$\mathbf{1}^{\top} q = 1 + u_1,$$
  
$$\mathbf{1}^{\top} r = 1 + u_2,$$
  
$$\sum_{i=1}^m \mathbf{1}_{q_i \neq r_i} \leq k + u_3$$

in the variables  $q, r \in [0, 1]^m$ , where  $u \in \mathbb{R}^3$ . There are three constraints, two of them convex, which means  $\bar{p} = (0, 0, 4)$ .

#### Theorem [Askari, A., El Ghaoui, 2019]

**NFS duality gap bounds.** Let  $\phi(k)$  be the optimal value of (SMNB) and  $\psi(k)$  that of the convex relaxation (USMNB). We have

$$\psi(k-4) \le \phi(k) \le \psi(k),$$

for  $k \geq 4$ .

Primalization is tricky, cf. paper. . .

# Outline

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

#### Problems with low rank data and sparsity constraints

$$p_{\rm con}(k) \triangleq \min_{\|w\|_0 \le k} f(Xw) + \frac{\gamma}{2} \|w\|_2^2, \qquad (P-{\rm CON})$$

in the variable  $w \in \mathbb{R}^m$ , where  $X \in \mathbb{R}^{n \times m}$  is low rank,  $y \in \mathbb{R}^n, \gamma > 0$  and  $k \ge 0$ .

Penalized formulation

$$p_{\text{pen}}(\lambda) \triangleq \min_{w} f(Xw) + \frac{\gamma}{2} \|w\|_{2}^{2} + \lambda \|w\|_{0}$$
 (P-PEN)

in the variable  $w \in \mathbb{R}^m$ , where  $\lambda > 0$ .

Key examples: LASSO,  $\ell_0$ -constrained logistic regression.

The **bidual** of (P-CON) is written

$$p_{\text{con}}^{**}(k) = \min_{v,u \in [0,1]^m} f(XD(u)v) + \frac{\gamma}{2}v^{\top}D(u)v : \mathbf{1}^{\top}u \le k$$
 (BD-CON)

Non-convex, but setting  $\tilde{v} = D(u)v$  equivalent to

$$p_{\mathrm{con}}^{**}(k) = \min_{\tilde{v}, u \in [0,1]^m} f(X\tilde{v}) + \frac{\gamma}{2} \tilde{v} D(u)^{\dagger} \tilde{v} : \mathbf{1}^\top u \le k$$
(1)

in the variables  $\tilde{v}, u \in \mathbb{R}^m$ , where  $\tilde{v}^\top D(u)^\dagger \tilde{v}$  is jointly convex in  $(\tilde{v}, u)$  (second order cone constraint).

This is the **interval relaxation** of the  $\ell_0$  sparsity constraint.

#### Proposition

**Gap Bounds.** Suppose  $X = U_r \Sigma_r V_r^{\top}$  is a compact, rank-r SVD decomposition of X. From a solution  $(v^*, u^*)$  of (BD-CON) with objective value  $t^*$ , with probability one, we can construct a point with at most k + r + 2 nonzero coefficients and objective value OPT satisfying

$$p_{\rm con}(k+r+2) \le OPT \le p_{\rm con}^{**}(k) \le p_{\rm con}(k)$$
 (Gap-Bound)

by solving a linear program written

minimize 
$$c^{\top} u$$
  
subject to  $f(U_r z^*) + \sum_{i=1}^m u_i \frac{\gamma}{2} {v_i^*}^2 = t^*$   
 $\sum_{\substack{i=1 \ m}}^m u_i \le k$   
 $\sum_{\substack{i=1 \ m}}^m u_i \ell_i v_i^* = z^*$   
 $u \in [0, 1]^m$ 
(2)

in the variable  $u \in \mathbb{R}^m$  where  $c \sim \mathcal{N}(0, I_m)$ ,  $z^* = \Sigma_r V_r^\top D(u^*) v^*$ .

# **Duality Gap Bounds**

LASSO vs. interval.

#### Optimality

- Interval: only need low rank
- LASSO: need RIP, incoherence

#### **Support Recovery**

- Interval: need low rank + RIP
- LASSO: need RIP, incoherence

Both have similar computational cost.

- Sparse Naive Bayes
- The Shapley-Folkman Theorem
- Duality Gap Bounds
- Other Applications
- Numerical Performance

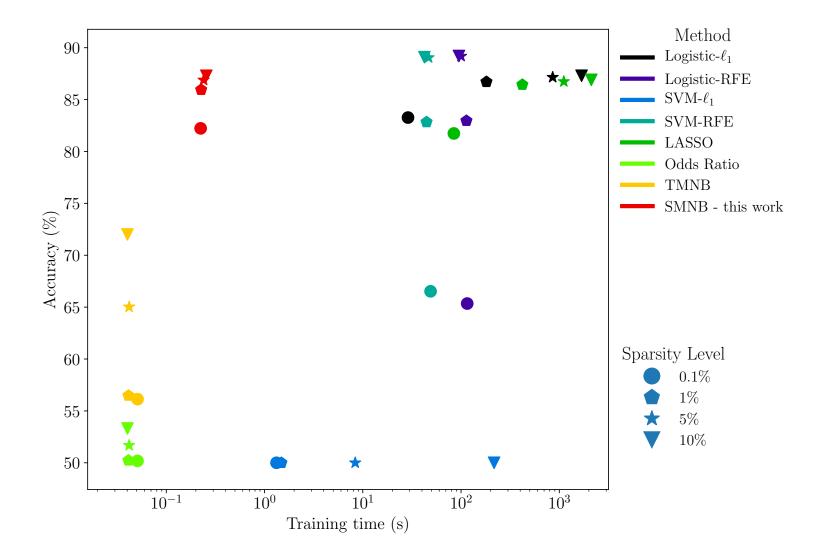
#### Data.

| FEATURE VECTORS    | Amazon      | IMDB            | TWITTER          | MPQA       | SST2        |
|--------------------|-------------|-----------------|------------------|------------|-------------|
| Count Vector       | $31,\!666$  | $103,\!124$     | $273,\!779$      | 6,208      | $16,\!599$  |
| TF-IDF             | $31,\!666$  | $103,\!124$     | $273,\!779$      | 6,208      | $16,\!599$  |
| TF-IDF WRD BIGRAM  | $870,\!536$ | $8,\!950,\!169$ | $12,\!082,\!555$ | $27,\!603$ | $227,\!012$ |
| TF-IDF CHAR BIGRAM | $25,\!019$  | $48,\!420$      | $17,\!812$       | 4838       | 7762        |

Number of features in text data sets used below.

|                    | Amazon | IMDB | TWITTER | MPQA   | SST2  |
|--------------------|--------|------|---------|--------|-------|
| Count Vector       | 0.043  | 0.22 | 1.15    | 0.0082 | 0.037 |
| TF-IDF             | 0.033  | 0.16 | 0.89    | 0.0080 | 0.027 |
| TF-IDF WRD BIGRAM  | 0.68   | 9.38 | 13.25   | 0.024  | 0.21  |
| TF-IDF CHAR BIGRAM | 0.076  | 0.47 | 4.07    | 0.0084 | 0.082 |

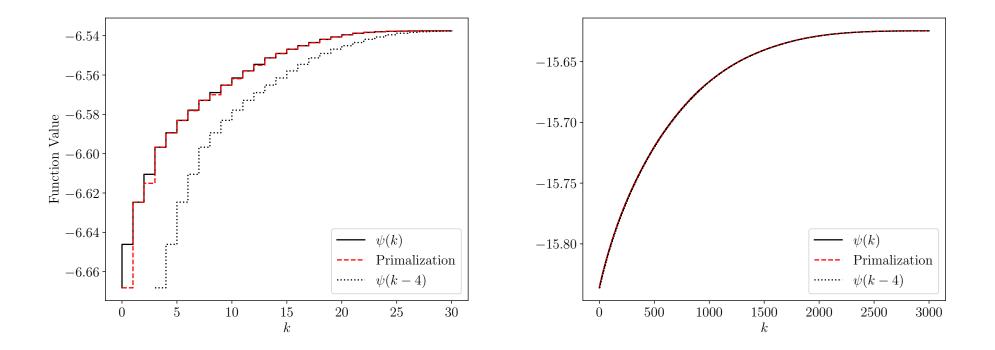
Average run time (seconds, plain Python on CPU).



Accuracy versus run time on IMDB/Count Vector, MNB in stage two.

Alex d'Aspremont

SFO, March 2021. 30/35



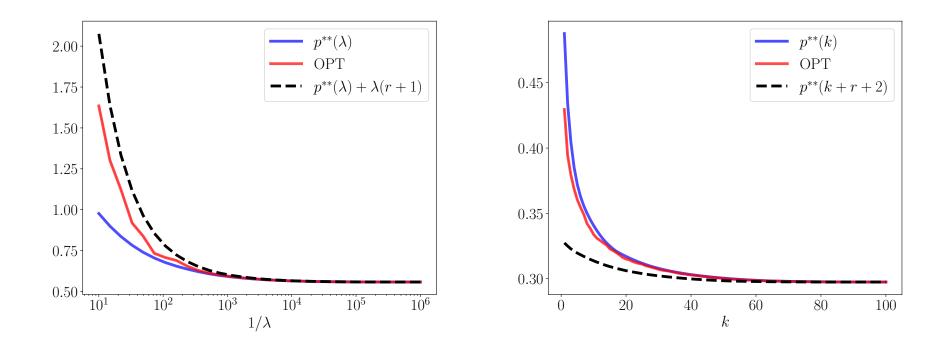
Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000 (right panel), showing that the duality gap quickly closes as m or k increase.

Alex d'Aspremont

SFO, March 2021. 31/35

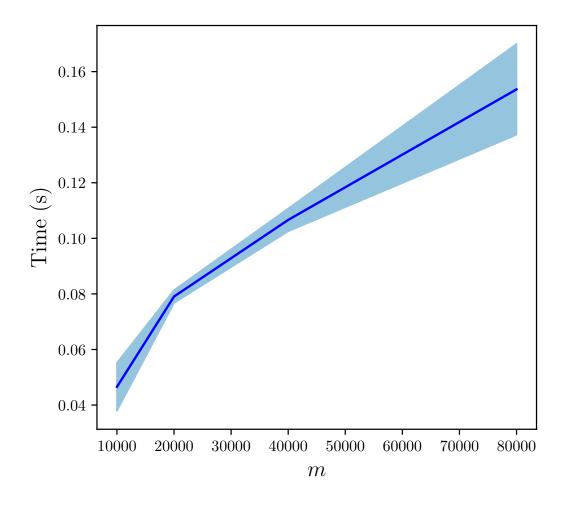
# LASSO and $\ell_0$ -Logistic Regression

Synthetic example with  $X \in \mathbb{R}^{1000 \times 100}$  and rank 10.



Left: Duality gap for linear regression with a  $\ell_0$  penalty.

*Right:* Duality gap for  $\ell_0$  constrained logistic regression.



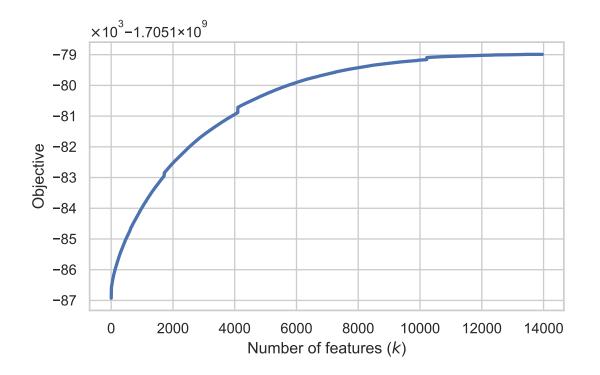
Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with fixed ratio k/m, empirically showing (sub-) linear complexity.

Alex d'Aspremont

SFO, March 2021. 33/35

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

- Preprocessing (NaN, encoding categorical features) takes 50 minutes.
- Computing  $f^+$  and  $f^-$  takes 20 minutes.
- Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.



Standard workstation, plain Python on CPU.

For naive Bayes, we get sparsity almost for free.

- Linear complexity.
- Nearly tight convex relaxation.
- Feature selection performance comparable to LASSO or  $\ell_1$  logistic regression, but NFS is  $100 \times$  faster. . .
- Requires no RIP assumption (only the naive one behind NB).
- Extends to LASSO,  $\ell_0$ -logistic regression.

Papers: ArXiv:1905.09884. AISTATS 2020 and ArXiv:2102.06742.

Python code: https://github.com/aspremon/NaiveFeatureSelection

#### References

Ivar Ekeland and Roger Temam. Convex analysis and variational problems. SIAM, 1999.

Matthieu Fradelizi, Mokshay Madiman, Arnaud Marsiglietti, and Artem Zvavitch. The convexification effect of minkowski summation. *Preprint*, 2017.

Alexander Lachmann, Denis Torre, Alexandra B Keenan, Kathleen M Jagodnik, Hoyjin J Lee, Lily Wang, Moshe C Silverstein, and Avi Ma'ayan. Massive mining of publicly available rna-seq data from human and mouse. *Nature communications*, 9(1):1366, 2018.

Ross M Starr. Quasi-equilibria in markets with non-convex preferences. Econometrica: journal of the Econometric Society, pages 25-38, 1969.