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Optimal and entropic optimal transport

Classical (two marginals) OT, the Monge-Kantorovich problem.

Given X , Y (e.g. subsets of Rd, or more generally Polish

spaces) µ ∈ P(X), ν ∈ P(Y ) and a cost c (continuous, say):

X × Y → R:

inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y)dγ(x, y) (1)

where Π(µ, ν) is the set of transport plans between µ and ν i.e.

the set of probability measures on X × Y having µ and ν as

marginals. Huge literature, Brenier solved the quadratic case,

Gangbo McCann... Books by Villani, Santambrogio.
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Kantorovich dual:

sup
{∫

X

ϕdµ+

∫

Y

ψdν : ϕ(x) + ψ(y) ≤ c(x, y)
}

(2)

Given ϕ, the largest feasible ψ is the c-transform of φ:

ψ(y) = ϕc(y) = inf
x∈X

{c(x, y)− ϕ(x)}

Complementary slackness: optimal plans γ concentrate on pairs

(x, y) for which ϕ(x) + ϕc(y) = c(x, y). Brenier:

c(x, y) = 1
2 |x− y|2, γ is supported by the graph of the

subdifferential of a convex potential, link with Monge-Ampère

etc...
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Entropic OT, regularization ε > 0

inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y)dγ(x, y) + εH(γ|µ⊗ ν)

where when p and q are probability measures on Z, we denote

H(q|p) =





∫
Z
(log(m)− 1)dq if q = mp

+∞ otherwise

Same as

inf
γ∈Π(µ,ν)

εH(γ|e−
c
εµ⊗ ν) (3)
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At least formally, writing Lagrange multipliers ϕ and ψ for the

marginal constraints, the optimal plan takes the form

γε = e
ϕ⊕ψ−c

ε µ⊗ ν

(where (ϕ⊕ ψ)(x, y) = ϕ(x) + ψ(y)). Setting

K = e−
c
ε , a = e

ϕ
ε , b = e

ψ
ε

K: Gibbs kernel, a and b Schrödinger potentials, γε is given by

γε = ((a⊗ b)K)µ⊗ ν.

With the mass conservation constraints: γε ∈ Π(µ, ν)
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Mass conservation gives two nonlinear integral equations for a

and b (or ϕ and ψ)

1 = a(x)

∫

Y

K(x, y)b(y)dν(y), 1 = b(y)

∫

X

K(x, y)a(x)dµ(x)

or

ϕ(x) = −ε log
(∫

Y

e
1
ε
(ψ(y)−c(x,y))dν(y)

)

ψ(y) = −ε log
(∫

X

e
1
ε
(ϕ(x)−c(x,y))dµ(x)

)

Schrödinger system which is the Euler-Lagrange system for the

dual of (3):

sup
ϕ,ψ

∫

X

ϕdµ+

∫

Y

ψdν − ε

∫

X×Y

e
ϕ⊕ψ−c

ε µ⊗ ν (4)

N.B: obvious invariance (ϕ+ λ, ψ − λ) with λ ∈ R same as

(a/M,Mb).
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Sinkhorn algorithm (or Gauss-Seidel):

at+1(x) =
1∫

Y
K(x, y)bt(y)dν(y)

,

bt+1(y) =
1∫

X
K(x, y)at+1(x)dµ(x)

if c ∈ L∞(µ⊗ ν), K bounded away from 0, linear convergence is

well-known. Elegant proof using the so-called Hilbert projective

metric and a theorem of Birkhoff (Franklin and Lorenz).
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Note that Sinkhorn is also block coordinate descent in the dual

(4), indeed fixing ϕ and maximizing the dual functional in ψ

gives

ψ(y) = −ε log
(∫

X

e
ϕ(x)−c(x,y)

ε dµ(x)
)

(soft c-transform: this is Laplace method!). Huge literature,

appears under different names and in different settings:

• Schrödinger system appears for the first time in the seminal

paper of Schrödinger in 1931, raised the interest of

Bernstein (1935), Beurling (1960)....

• large deviations, weakly interacting particle systems,

stochastic control, Dawson and Gärtner (1987), Föllmer

(1988), Mikami (2004), Léonard (2001, 2014)....
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• matrix scaling DAD problem: Sinkhorn, Sinkhorn-Knopp

(1967), Borwein, Lewis, Nussbaum (1990’s)...

• Statistics, IPFP, Csiszàr (1975), Rüschendorf (1995),...

• use for computational OT is more recent: Cuturi’s

lightspeed paper (2013) had an important impact, Galichon

and Salanié (2012), Cuturi and Peyré’s book (2018),

discrete case: nice stochastic interpretation of the dual (see

Galichon’s book, 2016).
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Multi-marginal problems

These are problems of the form

inf
γ∈Π(µ1,...,µN )

∫

X1×...×XN

c(x1, . . . , xN )dγ(x1, . . . , xN ) (5)

Where Π(µ1, . . . , µN) is the set of (multi-marginal plans) of

probability measures on
∏N
i=1Xi having µ1, . . . , µN as

marginals. Motivations in physics (fluid dynamics, electronic

correlation structure), economics and machine learning.
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Multi-marginal OT has its roots in Brenier’s relaxation (1989)

of Arnol’d’s (1966) interpretation of incompressible Euler as the

equation of geodesics in the group of measure preserving

diffeomorphisms. Time t ∈ [0, 1], flat torus T
d:

∂tu+ (u · ∇)u+∇p = 0, (t, x) ∈ [0, 1]×T
d, div(u) = 0

flow ∂tXt = u(t,Xt), X0 = id, measure preserving and at least

formally is a critical point of
∫
‖Ẋ(t, .)‖2L2dt over paths of

measure preserving diffeomorphisms.
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Setting et(ω) = ω(t) evaluation map, flat torus T
d,

γ ∈ P(Td ×T
d) bistochastic (i.e. has uniform marginals, think

of γ = (id, X1)#L
d), GIF(γ): generalized incompressible flows

compatible with the joint distribution γ of particles at times 0

and 1

GIF(γ) := {P ∈ P(C([0, 1],Td) : et#P = Ld, (e0, e1)#P = γ}

Brenier’s formulation is an OT problem with infinitely many

marginal constraints:

inf
P∈GIF(γ)

∫

C([0,1],Td)

∫ 1

0

|ω̇(t)|2dtdP (ω)
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Discretizing in time (and forgetting about the initial/terminal

joint marginal constraint) leads to an optimal transport

problem with a quadratic cost and several marginal constraints:

Ganbo and Swiech. The Wasserstein barycenter problem fits in

this category as well, gained some interest in machine learning.

Multi-population matching problems in economics as well.
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Symmetric and repulsive costs. Density functional theory is a

very important field in computational chemistry, in the strictly

correlated (or semi classical limit) regime it leads to

inf
γ∈Π(ρ,...,ρ)

∫

R3N

∑

1≤i<j≤N

1

|xi − xj |
dγ(x1, . . . , xN )

where ρ is the density of one electron and γ represents the

(symmetric) density of N electrons.

Buttazzo, de Pascale, Gori-Giorgi and Friesecke, Cotar and

Klüppelberg at about the same time (2012-2013). Very active

field, Champion, Colombo, Di Marino, Gerolin, Nenna, Pass.
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Not so much is known about the structure of optimal plans in

general with the notable exceptions of Pass (2011, 2012), Kim

and Pass (2014). Tempting to approximate with entropic OT:

inf
γ∈Π(µ1,...,µN )

εH(γ|e−
c
ε ⊗Ni=1 µi) (6)

look for γε = e
⊕Ni=1ϕi−c

ε ⊗Ni=1 µi with potentials solving the

multi-marginal Schrödinger system

1 = e
ϕi(xi)

ε

∫
∏
j 6=iXj

e
⊕N
j 6=iϕi−c

ε ⊗j 6=i µj . (7)

Lots of things to say about the zero noise-limit ε→ 0+

(Conforti, Léonard, Pal, Nutz, Tamanini). But for the rest of

the talk ε = 1!
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The Schrödinger system is well-posed

Joint work with Maxime Laborde. N ≥ 2, N probability spaces

(Xi,Fi,mi), i = 1, . . . , N and set

X :=
N∏

i=1

Xi,F :=
N⊗

i=1

Fi, m :=
N⊗

i=1

mi. (8)

Given i ∈ {1, . . . , N}, denote by X−i :=
∏N
j 6=iXj ,

m−i :=
⊗N

j 6=imj , identify X to Xi ×X−i i.e. will denote

x = (x1, . . . , xN ) ∈ X as x = (xi, x−i).
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L∞
++(Xi,Fi,mi) (respectively L∞

++(X,F ,m)) the interior of the

positive cone of L∞(Xi,Fi,mi) (respectively L∞(X,F ,m))

Kernel K = e−c ∈ L∞
++(X,F ,m) as well as densities

µi ∈ L∞
++(Xi,Fi,mi) with the same total mass:

∫

Xi

µidmi =

∫

Xj

µjdmj , i, j ∈ {1, . . . , N}. (9)

Aim: show the well-posedness of the multi-marginal Schrödinger

system. Multi-marginal Schrödinger system: find potentials ϕi

in L∞(Xi,Fi,mi) such that for every i and mi-almost every

xi ∈ Xi one has:

µi(xi) = eϕi(xi)
∫

X−i

K(xi, x−i)e
∑
j 6=i ϕj(xj)dm−i(x−i). (10)

The Schrödinger system is well-posed/2
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If ϕ = (ϕ1, . . . , ϕN ) solves (10) so does every family of

potentials of the form (ϕ1 + λ1, . . . , ϕN + λN ) where the λi’s are

constants with zero-sum. There are N − 1 degrees of freedom,

let us add to (10) the additional N − 1 linear equations:
∫

Xi

ϕidmi = 0, i = 1, . . . , N − 1. (11)

With this normalization, (10) has at most one solution, because

(10) implies that ϕ solves

sup
ϕ=(ϕ1,...,ϕN )

N∑

i=1

∫

Xi

ϕiµidmi −

∫

X

K(x)e
∑N
j=1 ϕj(xj)dm(x) (12)

which is strictly concave in ⊕Ni=1ϕi.

The Schrödinger system is well-posed/3
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Define the Banach space

E :=

{
ϕ ∈

N∏

i=1

L∞(Xi,Fi,mi) :

∫

Xi

ϕidmi = 0, i = 1, . . . , N − 1

}

For ϕ = (ϕ1, . . . , ϕN) ∈
∏N
i=1 L

∞(Xi,Fi,mi) define

T (ϕ) = (T1(ϕ), . . . , TN (ϕ)) ∈
∏N
i=1 L

∞(Xi,Fi,mi) by

Ti(ϕ)(xi) :=

∫

X−i

K(xi, x−i)e
∑N
j=1 ϕj(xj)dm−i(x−i). (13)

The Schrödinger system is well-posed/4
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Note that T (E) = T (
∏N
i=1 L

∞(Xi,Fi,mi)) ⊂ F++ where

F++ := F ∩
N∏

i=1

L∞
++(Xi,Fi,mi), (14)

and

F :=

{
µ ∈

N∏

i=1

L∞(Xi,Fi,mi) :

∫

X1

µ1dm1 = . . . =

∫

XN

µNdmN

}
.

(15)

With these definitions the Schrödinger system simply writes

µ = T (ϕ).
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Well-posedness

Theorem 1 For every µ ∈ F++, the multi-marginal

Schrödinger system (10) admits a unique solution

ϕ = S(µ) ∈ E, moreover S ∈ C∞(F++, E).

Simply based on the inverse function theorem and the Fredholm

alternative theorem.

The Schrödinger system is well-posed/6
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Local invertibility. Convenient to define the map

T̃ = (T̃1, . . . , T̃N) by T̃i(ϕ) := log(Ti(ϕ)) for

ϕ = (ϕ1, . . . , ϕN ) ∈
∏N
i=1 L

∞(Xi,Fi,mi) i.e.

T̃i(ϕ)(xi) := ϕi(xi)+log
(∫

X−i

K(xi, x−i)e
∑
j 6=i ϕj(xj)dm−i(x−i)

)
.

(16)

Both T̃ and T are of class C∞, more precisely for ϕ and h in∏N
i=1 L

∞(Xi,Fi,mi), we have

T̃ ′
i (ϕ)(h)(xi) = hi(xi)+

∫
X−i

K(xi, x−i)e
∑
k 6=i ϕk(xk)

∑
j 6=i hj(xj)dm−i(x−i)

∫
X−i

K(xi, x−i)e
∑
j 6=i ϕj(xj)dm−i(x−i)

and

T ′
i (ϕ)(h)(xi) = eT̃i(ϕ)(xi)T̃ ′

i (ϕ)(h)(xi). (17)
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Fix ϕ := (ϕ1, . . . , ϕN ) ∈ E, observe that T̃ ′(ϕ) extends to a

bounded linear self map of
∏N
i=1 L

2(Xi,Fi,mi) which is of the

form

T̃ ′(ϕ) := id+L (18)

with L compact. Convenient to define the (equivalent to m)

probability

Qϕ(dx) =
K(x)e

∑N
j=1 ϕj(xj)m(dx)

∫
X
K(x)e

∑
N
j=1 ϕj(xj)dm(x)

. (19)
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For i = 1, . . . , N , disintegrate Qϕ with respect to its i-th

marginal Qiϕ:

Qϕ(dxi, dx−i) = Q−i
ϕ (dx−i|xi)⊗Qiϕ(dxi) (20)

where Q−i
ϕ (dx−i|xi) is the conditional probability of x−i given

xi according to Qϕ. The compact operator L can then

conveniently be expressed in terms of the corresponding

conditional expectations operators. Indeed, setting

L(h) = (L1(h), . . . , LN (h)), we have

Li(h)(xi) =

∫

X−i

(∑

j 6=i

hj(xj)
)
Q−i
ϕ (dx−i|xi) for mi-a.e. xi ∈ Xi.

The Schrödinger system is well-posed/9
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Assume T̃ ′(ϕ)(h) = 0 (equivalently T ′(ϕ)(h) = 0) then

hi(xi) = −

∫

X−i

(∑

j 6=i

hj(xj)
)
Q−i
ϕ (dx−i|xi)

multiplying by hi(xi) and then integrating with respect to Qiϕ
gives

∫

Xi

h2i (xi)dQ
i
ϕ(xi) = −

∑

j, j 6=i

∫

X

hi(xi)hj(xj)dQϕ(x)

The Schrödinger system is well-posed/10
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Summing over i thus yields

∫

X

( N∑

i=1

hi(xi)
)2

dQϕ(x) =
N∑

i=1

∫

Xi

h2i (xi)dQ
i
ϕ(xi)+

∑

i,j, j 6=i

∫

X

hi(xi)hj(xj)dQϕ(x)

= 0.

Since Qϕ is equivalent to m, we deduce that
∑N
i=1 hi(xi) = 0

m-a.e. that is h is constant and its components sum to 0. Hence

ker(T̃ ′(ϕ)) has dimension N − 1 and ker(T̃ ′(ϕ)) ∩ E = {0} i.e.

T̃ ′(ϕ) is one to one on E.
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Using the Fredholm alternative, we deduce that R(id+L) has

codimension N − 1 (same as F ). It is then easy to deduce that

T ′(ϕ)(E) = F and local invertibility follows. Therefore T (E) is

open, it is also closed in F++ hence T is also onto by

connectedness of F++.

The Schrödinger system is well-posed/12
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Sinkhorn algorithm converges linearly

Same L∞ setting as before K = e−c bounded from above and

away from 0, fixed marginals mi (so take mi as reference

measures, i.e. take µi = 1 in the notations of the previous part).

We want to solve

eϕi(xi)
∫

X−i

e−c(x1,...,xN )+
∑
j 6=i ϕj(xj)dm−i(x−i) = 1, (21)

for every i and mi-a.e. xi, which means that Qϕ = Ke⊕ϕim has

marginals (m1, . . . ,mN ). Let us do it in a

Gauss-Seidel/Sinkhorn/IPFP way i.e. by fitting one constraint

at a time.
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Sinkhorn algorithm converges linearly 30

The system (21) is well-known to be the Euler-Lagrange

optimality condition for the convex minimization problem

inf
ϕ∈

∏
N
i=1 L

∞(Xi,Fi,mi)
F (ϕ) := −

N∑

i=1

∫

Xi

ϕidmi +

∫

X

dQϕ (22)

and if ϕ solves (21), the measure Qϕ = Ke⊕ϕim solves the

multi-marginal entropy minimization:

inf
Q∈Π(m1,...,mN )

H(Q|e−cm).
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Again, N − 1 degrees of freedom, so impose
∫

X1

ϕ1dm1 = . . . =

∫

XN−1

ϕN−1dmN−1 = 0. (23)

denoting by Lp⋄(Xi,Fi,mi) the space of zero-mean Lp

potentials, consider

inf
ϕ∈E

F (ϕ) where E :=
N−1∏

i=1

L∞
⋄ (Xi,Fi,mi)× L∞(XN ,FN ,mN ).

(24)
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Starting from ϕ0 ∈ E, the updates of the Sinkhorn algorithm,

consists, given ϕt = (ϕt1, . . . , ϕ
t
N ) ∈ E, in:

ϕt+1
1 := argminϕ1∈L∞

⋄ (X1,F1,m1)F (ϕ1, ϕ
t
2, . . . , ϕ

t
2) (25)

i.e.

ϕt+1
1 (x1) := − log

(∫

X−1

e
∑N
j=2 ϕ

t
j(xj)K(x1, x−1)dm−1(x−1)

)
+λt1,

(26)

where

λt1 =

∫

X1

(
log

(∫

X−1

e⊕
N
j=2ϕ

t
jK(x1, x−1)dm−1(x−1)

))
dm1(x1).

(27)
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Then, for i = 2, . . . , N − 1,

ϕt+1
i := argminϕi∈L∞

⋄ (Xi,Fi,mi)F (ϕ
t+1
1 , . . . , ϕt+1

i−1, ϕi, ϕ
t
i+1, . . . , ϕ

t
N)

(28)

i.e.

ϕt+1
i (xi) := − log

(∫

X−i

e⊕
i−1
j=1ϕ

t+1
j ⊕Nj=i+1ϕ

t
jK(xi, x−i)dm−i)

)
+λti,

(29)

where

λti =

∫

Xi

(
log

(∫

X−i

e⊕
i−1
j=1ϕ

t+1
j ⊕Nj=i+1ϕ

t
jK(xi, x−i)dm−i(x−i)

))
dmi.

(30)
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Finally, for i = N ,

ϕt+1
N := argminϕN∈L∞(XN ,FN ,mN )F (ϕ

t+1
1 , . . . , ϕt+1

N−1, . . . , ϕN )

(31)

i.e.

ϕt+1
N (xN ) := − log

(∫

X−N

e⊕
N−1
j=1 ϕ

t+1
j K(xN , x−N )dm−N (x−N )

)

(32)

The convergence of the Sinkhorn iterates to a solution of (21)

(hence a minimizer of (22)) was established by Di Marino and

Gerolin, we wish to slightly improve this result by showing that

this convergence is linear

Multi-marginal Sinkhorn/6
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Theorem 2 The sequence of Sinkhorn iterates ϕt converges

strongly in Lp⋄(X1,F1,m1)× . . .× Lp⋄(XN−1,FN−1,mN−1)×

Lp(XN ,FN ,mN ) for every p ∈ [1,+∞), to the unique solution

ϕ of (24). Moreover, there holds

F (ϕt)− F (ϕ) ≤
(
1−

e−(16N−8)‖c‖∞

N

)t
(F (ϕ0)− F (ϕ)). (33)

Btw, ϕt − ϕ also converges linearly in Lp for every p ∈ (1,∞).

Multi-marginal Sinkhorn/7
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First step: since c is bounded so are the Sinkhorn iterates:

For every t ≥ 1, the Sinkhorn iterates ϕt satisfy the bounds:

‖ϕti‖L∞(Xi,Fi,mi) ≤ 2‖c‖∞, i = 1, . . . , N − 1, (34)

‖ϕtN‖L∞(XN ,FN ,mN ) ≤ (2N − 1)‖c‖∞. (35)

Next steps: Sinkhorn iterates thus remain in intervals where the

exponential in F remains uniformly convex and with a bounded

second derivative. One can therefore argue as Luo-Tseng and

Beck-Tetruashvilli analysis of block coordinate descent (paying

a bit of attention to the fact we are in infinite dimensions)
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Trivial fact: given M > 0, ∀(a, b) ∈ [−M,M ]2:

eb − ea − ea(b− a) ≥
e−M

2
(b− a)2, |eb − ea| ≤ eM |b− a|. (36)

so, defining

ν = e−(4N−2)‖c‖∞, (37)

one has

F (ϕt)− F (ϕt+1) ≥
ν

2

N∑

i=1

‖ϕti − ϕt+1
i ‖2L2(Xi,Fi,mi)

. (38)

in particular ϕt − ϕt+1 tends to 0 strongly in L2 (and in fact in

any Lp). Convergence to ϕ solving the Schrödinger system

follows (lots of compactness again).
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Using (36) again, we get

F (ϕ)− F (ϕt) ≥

N∑

i=1

∫

Xi

∂iF (ϕ
t)(xi)(ϕi(xi)− ϕti(xi))dmi(xi)

+
ν

2

N∑

i=1

‖ϕi − ϕti‖
2
L2(mi)

Define

ϕ̃ti := (ϕt+1
1 , . . . , ϕt+1

i , ϕti+1, . . . , ϕ
t
N ), i = 1, . . . , N−1, ϕ̃tN := ϕt+1,

(39)

by construction
∫

Xi

∂iF (ϕ̃
t
i)(ϕi − ϕti)dmi = 0.

Multi-marginal Sinkhorn/10
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So

F (ϕ)− F (ϕt) ≥
N∑

i=1

∫

Xi

(∂iF (ϕ
t)− ∂iF (ϕ̃

t
i))(ϕi − ϕti)dmi

+
ν

2

N∑

i=1

‖ϕi − ϕti‖
2
L2(mi)

≥ −
1

2ν

N∑

i=1

‖∂iF (ϕ
t)− ∂iF (ϕ̃

t
i)‖

2
L2(mi)

where we have used Young’s inequality in the last line.
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Sinkhorn algorithm converges linearly 40

We thus have shown that

F (ϕt)− F (ϕ) ≤
1

2ν

N∑

i=1

‖∂iF (ϕ
t)− ∂iF (ϕ̃

t
i)‖

2
L2(mi)

. (40)

Using the second inequality in (36) together with the L∞

bounds on ϕt and Jensen’s inequality yield

(∂iF (ϕ
t)(xi)−∂iF (ϕ̃

t
i(xi))

2 ≤
1

ν2

∫

X−i

(⊕Nj=1ϕ
t
j−⊕Nj=1(ϕ̃

t
i)j)

2m−i

so that

‖∂iF (ϕ
t)− ∂iF (ϕ̃

t
i)‖

2
L2(mi)

≤
1

ν2

N∑

j=1

‖ϕtj − (ϕ̃ti)j‖
2
L2(mj)

≤
1

ν2

N∑

j=1

‖ϕtj − ϕt+1
j ‖2L2(mj)

,
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Sinkhorn algorithm converges linearly 41

together with (40), we thus obtain

F (ϕt)− F (ϕ) ≤
N

2ν3

N∑

i=1

‖ϕti − ϕt+1
i ‖2L2(mi)

. (41)

Finally, combining (41) with (38), we deduce

F (ϕt)− F (ϕ) ≤
N

ν4
(F (ϕt)− F (ϕt+1))

=
N

ν4
((F (ϕt)− F (ϕ))− (F (ϕt+1)− F (ϕ)))

from which the linear convergence in (33) readily follows.
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