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2. Prox versus grad for texture segmentation (numerical results)

3. Prox versus grad for piecewise constant denoising (numerical and
theoretical comparisons)



Proximal algorithms in signal and
image processing



From wavelet transform and sparsity to proximity operator

e Wavelets: sparse representation of most natural signals.

e Filterbank implementation of a dyadic wavelet transform: F € RO
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From wavelet transform and sparsity to proximity operator

softa(¢) = (max{\g\ = )\,O}sign(gi))igQ — Identity

=== Soft-thresholding

= proxy ., (€)

1
= argmin =[|v = C[[3 + Allvllx




Proximity operator

Definition [Moreau,1965| Let ¢ € g(#H) where H denotes a real Hilbert
space. The proximity operator of ¢ at point x € H is the unique point

denoted by prox,x such that

: 1 5
Vx € = - _
(Vx €M)  prox,x arg;ﬁegjt@(y) 5 [x =yl




Proximity operator

Definition [Moreau,1965] Let ¢ € o(H) where H denotes a real Hilbert
space. The proximity operator of ¢ at point x € H is the unique point
denoted by prox,x such that

: 1 5
v pu— — —
(Vx €M)  prox,x 2730l o(y) + > [x =yl

Examples: closed form expression

proxy.,: soft-thresholding with a fixed threshold A > 0.
Prox|.|, , [Peyré,Fadili,2011].

prox. s with p = {%, %,2,3,4}[Chaux et al.,2005].

proxp,, [Combettes,Pesquet,2007].

Proxs> _|lq with overlapping groups [Jenatton et al., 2011]
Composition with a linear operator: prox,,; closed form if LL* = v1d
[Pustelnik et al., 2012]

and many others: Prox Repository [Chierchia et al., 2016]


http://proximity-operator.net

From wavelet transform and sparsity to proximity operator

softa(¢) = prOX/\H.Hl(C)

o1
= argmin =l — €[5 + Allvlly
v 2

== |dentity
=== Soft-thresholding

ﬁ = F*pI'OX)\”,Hl(Fg)
= prox,|.|,(8)

.1
= argmin [|u — g||3 + Al Full



Example: Inverse problems

e Data: We observe data g € R¥ being a degraded version of an
original image U € RI®l such that: g = Au + ¢
e A:RKXI2: denotes a linear degradation (e.g. a blur, decimation op.)
¢ : denotes a noise (e.g. Gaussian)

e Goal: Restore the degraded image i.e., find u close to u:

ue ArgmmeAu — g3+ | Dul[5
ucRI€l %,_/

Data-term

r": - ;“"; ,_: F iy -
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Penalization

A s & e e s b O
(a) Degraded (b) Inverse filtering Quadratic regularisation (e) Total variation
Uniform blur 9 x 9 (c)A=1d (d) A Laplacian

Gaussian noise

— N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, J.-C. Pesquet, Wavelet-based Image 7
Deconvolution and Reconstruction, Wiley Encyclopedia of EEE, Feb. 2016. [PDF]



https://hal.archives-ouvertes.fr/hal-01164833v1

Example: Inverse problems

e Data: We observe data g € R¥ being a degraded version of an
original image U € RI®l such that: g = Au + ¢
e A:RKXI2: denotes a linear degradation (e.g. a blur, decimation op.)
e ¢ : denotes a noise (e.g. Gaussian)

e Goal: Restore the degraded image i.e., find u close to u:

. 1
U € Argmin - [[Au—g[3+A [|Dull5
ucRI€l L,_/

Dt Penalization

e Specificities of the data-term:
e Data-term differentiable with ||A||>-Lipschitz gradient.
e (Closed form) expression of the proximity operator for some 7 > 0,

prOX%HA_,gHQ(u) = (TA*A+1d) " (7A*g + u)

e Rarely strongly convex.



Example: COVID-19 Reproduction Number R(t)

e Data/model: Poisson model to mimic the spread of an epidemic:

e R(t): propagation speed.

e g € RT: Number of cases or hospitalisation for a single country or
single department. Count of daily new infections g = (g¢)1<t<7
modelled as Poisson random variables of parameter

= R(t) Xok>1 H(K)ge—k-

o >~ ¢(k)gi—k: models previous days effects.

e Goal: Estimate the reproduction number R(t) = u from the data g:

u € Argmin DKL(g,u ® g)+\ || Dul|x
ueR” —

Data-term Penalization

with

—gmln(vm) + Vm if vm>0and gm >0
DKL(v; g) Zw Vm; 8m) where  (Vm; &m) = { vim if vm>0andgn=0
400 otherwise



Example: COVID-19 Reproduction Number R(t)
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— P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas,
E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to
estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via
convex optimization, PLoS One, 15(8), Aug. 2020. [PDF]

— [Daily updates]



https://hal.archives-ouvertes.fr/hal-02271333/document
https://perso.ens-lyon.fr/patrice.abry/PlotCovid.pdf

Example: COVID-19 Reproduction Number R(t)

e Data/model: Poisson model to mimic the spread of an epidemic:

e R(t): propagation speed.

e g € RT: Number of cases or hospitalisation for a single country or
single department. Count of daily new infections g = (g¢)1<t<7
modelled as Poisson random variables of parameter

= R(t) Xok>1 H(K)ge—k-

o >~ ¢(k)gi—k: models previous days effects.

e Goal: Estimate the reproduction number R(t) = u from the data g:

u =€ Argmin DKL(g,u ® ®g) + A\s||Gu||1 + A¢||Dul|1

ucR™V

Data-term Penalization

with

—gmln(vm) + Vm if vm>0and gm >0
DKL(v; g) Zw Vm; 8m) where  (Vm; &m) = { vim if vm>0andgn=0
400 otherwise
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Example: COVID-19 Reproduction Number R(t)

Covid-19 - France continentale
Modéisaton
‘Taux de reproduction estimé R(T) ? Aoy + i 515 (EnsceLyon.

_D

Date:
18/05/2021 L

— P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas,
E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to
estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via
convex optimization, PLoS One, 15(8), Aug. 2020. [PDF]
— [Evolution along time and across France of R(t)]
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https://hal.archives-ouvertes.fr/hal-02271333/document
https://perso.ens-lyon.fr/patrice.abry/DeptRegul.mp4

Example: COVID-19 Reproduction Number R(t)

e Data:
e g € R™ : Number of cases or hospitalisation for a single country or
single department.
e & : serial interval function (the probability of secondary infections as a
function of time after symptoms onset).

e Goal: Estimate the reproduction number R(t) = u from the data g:

u € Argmin DKL(g,u ® ®g)+X | Dul|;
ueR” —

Data-term Penalization

e Specificities of the objective function:
e Data-term differentiable but without a Lipschitz gradient.

e Closed form expression of the proximity operator associated to
DKL(g, - © ®g)

12



Non-smooth optimization

e Numerous problems in signal and image processing can be modelled as
a sum of convex functions composed with linear operators

For every s € {1,...,S}, f; € To(Gs) and Ls: RI®l — G, denote a linear

operator. We aim to solve: s

u € Argmin Z fs(Lsu)
ucR€| s—1

e Some of them involve functions where only the proximity operator can
be considered (¢1-penalization, DKL,...)

e Some of them involve functions where both gradient or proximity

operator can be considered (Huber function, ¢3-data-term,. . .) 3



Non-smooth optimization

For every s € {1,...,S}, f; € To(Gs) and Ls: RI®l — G, denote a linear
operator. We aim to solve:

S
u € Argmin Z fs(Lsu)
werl?l

e Since 2004, numerous proximal algorithms:
[Bauschke-Combettes, 2017]
- Forward-Backward S = 2, f; Lipschitz gradient and L, = 1Id
- ADMM Invert 322, L L2
- Primal-dual (Chambolle-Pock, Condat-Vi ...)

e Question: When both gradient step or proximal step can be

performed, which type of step should we prefer ?
14



Prox versus grad for texture
segmentation (strongly convex
minimization problem)




Stochastic textures

° Geometrlc textures — perlodlc
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Stochastic textures

° Geometrlc textures — perlodlc
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Stochastic textures

e Sinusoidal signal — periodic

Time

=

log frequaicy

e Sinusoidal signal + noise — periodic

log power

Time

H

log frequency

e Monofractal signal — scale-free

power

Time

16
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Stochastic textures

e Sinusoidal signal — periodic

Time

log frequaicy

e Sinusoidal signal + noise — periodic

log power

Time

log frequency

e Monofractal signal — scale-free

power

Time

log frequency

Texture segmentation:
— require to compute

slope at each location

A log power
vy

>
log frequency

the
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From wavelets to local regularity

e Discrete wavelet transform:

T H: e RN
F:[H{l,...,HI37LI4] where {J,m

N
L4 € RN

e Wavelet coefficients at scale j € {1,...,J} and
subband m = {1,2,3}:

Cjm = Hjmg
e Wavelet leaders at scale j and location k

[Wendt et al., 2009]

— local supremum taken within a spatial neighborhood
across all finer scales j/ < j

Lix=sup |G mkl
m={1,2,3}
)‘j’,K’CAj»K

where {m = k2, (k +1)2))

Aj,ﬁ = Upe{71,0,1}2 /\',5+p




From wavelets to local regularity: joint estimation (2)

e Behavior through the scales [Jaffard, 2004]
A log power

Ljp=~s,2M as 20— 0 v

logy L k =~ logy sp+jhy,  as 2 0.
——

Vn

e Data-fidelity term [Pascal, Pustelnik, Abry,
2021]

(v, h; L) ZZvn—i—jh log, £).1)?

) e

D 11
1 2
where A =

2 1
18




From wavelets to local regularity: joint estimation (2)

Closed form for proxg [Pascal, Pustelnik, Abry, 2021]
For every (v, h) € RI%I x RI? denoting (p, q) = proxe (v, h) € R xRI

one has
o (1+R2)(S+V)7R1(T+h)
T (H+R)(I+R)-R; 7
_ (4R)(TH+h)—Ri(S+v)
9= " (1+R)(1+R)-R?

where Ry, =32, j™, Sp =) ;logy Ljn and Tn =3, jlogy L) p-

Proof: Rely on the closed form of

Pn\ (7 I —1 * Vn
<qn> = PTOX1ja — log, £a13 <h> = (A"A+1d) <A log, £, + <h>>

1 1 R R
1 2 R R
with A= | . . | and thus
Do Sp
Alog, L=

T 19



From wavelets to local regularity: joint estimation (2)

Strongly convex fidelity term ® [Pascal, Pustelnik, Abry, 2021]
Function ®(v, h; L) is p-strongly convex w.r.t the variables (v, h), with
1 = x where x > 0 is the lowest eigenvalue of the symmetric and positive

Ro R :
R R2> where Ry, =3 j™.

definite matrix A*A = (

Strong-convexity constant

2.5
9 —+ji=1
=2
1.5L |—quadratic
=
1 poE >
0.5 e
P <
01 - Y ‘ ‘
2 4 6 8 10

Largest octave j, 20



From wavelets to local regularity: joint estimation (2)

Expression of the conjugate of ® [Pascal, Pustelnik, Abry, 2021]

(v, h; L) = %((v, h) " 37 (v, h) D) + (8, T) T, 37 (v, ) ) + ¢,

where

= (S, T, I7YS,T)T) - L3, (log, £5)%.

21



From wavelets to local regularity: joint estimation (2)

By definition of the Fenchel conjugate,

F*(v,h;£)=  sup  (v,v)+ (h,h) — F(v, h; C).
VERIl heRrIQ|

The supremum is obtained at (v, I_r) such that, for every n € Q,
{Vn - Zj (‘72 +j/_72 — log, Ljyﬂ) =0
hy =325 (Vo + jhy — logy £ ) = 0.
or equivalently,

R0\7£+ le_'lﬂ = VQ+S£
R1Vg+ RZEQ = hﬂ+7—ﬂ

that yields

22



From wavelets to local regularity: joint estimation (2)

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation
[Pascal, Pustelnik, Abry, ACHA, 2021]
Find (v,h) € Argrhnin > jlllogy Lj—v —jh[3+ X ||[Dv; OzDh}THZl

v7

TV
where TV, couples spatial variations of v and h and thus favor their oc-

currences at same location.

-+ Combined estimation and segmentation.

-+ Joint estimation of the local variance and local regularity.

-+ Strongly convex.

-+ Closed form expression of the proximity operator associated to the
data-fidelity term.

-+ Dual formulation possible.

23



From wavelets to local regularity: joint estimation (2)

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation
[Pascal, Pustelnik, Abry, ACHA, 2021]
Find (v,h) € Argrhnin > jlllogy Lj—v —jh[3+ X ||[Dv; OzDh}THZl

v7

TVq

where TV, couples spatial variations of v and h and thus favor their oc-

currences at same location.

Algorithmic solutions:

e Accelerated strongly convex Chambolle-Pock algorithm.

e FISTA on the dual [Chambolle-Dossal, 2015].

24



Algorithm 5: PDq: Coupled estimation (Ph. (12))

Initialization:

Set vl ¢ BITI, ul = Dpl, gl0] = 44000

Set bl e RITI £ — opalM, B = g,

Set o = 0 and A = (.

Set (dp. vp) such that dgeg max(1, o) ||D||* < 1;

for { £ M* do

Primal variable update:

plt+1] JI (Dl
(;;IH-]) = ProX; g (hm) =0 | et

Dual variable wpdale:

u|r+l| -u[?] + thD'Ultl
f[{_'_l] = |}l'0x:,-l[)\| Jaad® fltl + fﬂ'rl‘.‘thlr]

Descend sleps updale:

By = (14 2u8,) "2, G101 = ey, vy = 11 /0,

Awvathiary variable wpdote:

glt+1l wlt+1] __ wlt+1l ault]
sl B (le"]) + 0 ((f[tﬂ]) - (glfl))

25



Algorithm 3: FISTA: Coupled estimation (Ph. (12))

Initialization: Set wl? ¢ B2=T! g0l — 40,

Set £ ¢ R2xITI 2 £,

Let {Sﬂ., Tﬂ:} defined in (4);

Let J defined in (3);

.

Set () (of)pl) =37 (8w Ta) s

Set b= 2 and 7 = 1;

Set o = O and A = 0

Set v = 0s. toymax(l, ) |T7D)? < 1;
for i €« [ do

Dual variable updaie:

wlt+1 ultl + Dol
(f[z+1]) = ProXo s o..)" E,[!I +?”Dh|r|

FISTA porameler update

_ t+b
T4l =
Auwerelinry variable update

@l = glt+1) | =t (ulr—ll _ ulfl}
Tidl

gt plet1] | nima (flr—ll _ g|‘|)
Ted1

Primal vartable update

RTEST DN Dl )
plvt ) =g ) =9 oD (g1 _ gt

26



Two-step versus one-step texture segmentation

Configuration I

Configuration IIT

T-ROF T-joint T-coupled T-ROF T-joint T-coupled

z . DFB 96 + 48 > 250 > 250 241 +18 > 250 > 250

£ = FISTA  1.7+04 50.2 £21.0 231 £37 3.7+0.7 48.1+3.4 > 250

2 ) PD  31.8+17.0 > 250 > 250 201 + 69 > 250 > 250

== AcPD 15+04 31.4+46 125 + 67 45.2 +43 405 +2.8 121 +42
— DFB 1,090 +520 4,840+15 4,210 £ 76 2,010 £ 73  4,810+215 4,200 £+ 76
> FISTA 16+4 1,030 £410 = 4,800 + 560 30+5 989 + 64 5,110 £ 340
= PD 297 £ 150 4,180 £+ 69 4,110 £ 43 1,580+490 4,150 +£18 = 4,100+ 15
= 2,420 +£1,300| 349 + 330 785+ 59 2,320+ 790

AcPD 15+4 619 + 96

Table 2: Number of iterations and computational time necessary to reach Condition (26) for
the different proximal algorithms investigated, illustrated on two configurations I (AH = 0.2,
AY? =0.1) and III (AH = 0.1, AX? = 0.1). DFB: Dual Forward-Backward, FISTA: inertial
acceleration of DFB, PD: primal-dual, AcPD: strong-convexity based acceleration of PD.
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Two-step versus one-step texture segmentation

E - m

Mask Synthetic texture  Optimal solution
T-ROF Matrix factorization Proposed
[Cai2013] [Yuan2015] [Pascal2019]

= lllustration of Interface detection on a piecewise fractal textured image28
that mimics a multiphasic flow.



Results on multiphase flow data

[Arbelaez et al. 2011] [Yuan et al. 2015] T-ROF PLOVER

i
ﬂ’ - - -
29




Results on multiphase flow data

Morphological this
Ly /1o tools collaboration

LOW ACTIVITY*

HIGH ACTIVITY*

30
" (06 Q1) = (300,300) mL/min  (Qc Qy) = (1200,300) mL/min



Prox versus grad on texture segmentation: conclusions

e Joint estimation and segmentation formulated as a strongly convex
minimization problem. — Fast algorithmic procedure. Application to
large-scale problems.

e Chambolle-Pock using strong convexity faster than FISTA on the
dual. — Proximal step faster than gradient step based on numerical
comparisons.

e Matlab toolbox including automatic tuning of the hyperparameters :
GitHub (bpascal-fr/gsugar)

31
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Prox versus grad




Non-smooth optimization: large-scale data

u € Argmin f(u) + g(u) (5)
ucH

e Activating f and g via proximal steps can be advantageous
numerically [Combettes, Glaudin,2019]

e The choice of the most efficient algorithm for a specific data
processing problem with the form of (5) is a complicated task.

e Convergence rate is an useful tool in order to provide a theoretical
comparison among algorithms.

e The theoretical behaviour of an algorithmic scheme may differ
considerably from its numerical efficiency, which enlightens the
importance of obtaining sharp convergence rates exploiting the

properties of f and g.
32



Prox versus grad

u € Argmin f(u) + g(u)
ucH

e Sharp linear convergence rates can be obtained for several splitting
algorithms under strong convexity of f and/or g. [Giselsson,
Boyd,2017][Davis, Yin,2017] [Taylor,Hendrickx,Glineur,2018] [Ryu,
Hannah, Yin,2019] [Ryu, Taylor, Bergeling, Gilsesson,2019]

e Sub-linear convergence rates of some first order methods depending
on the KL-exponent are obtained in when f 4 g is a KL-function.
([Attouch, Bolte, Svaiter,2013][Bolte, Daniilidis, Lewis,2006]. —
KL-exponents are usually difficult to compute.

33



Algorithms

Gradient method Let f € Io(#) and f € G2 (H) (i.e. Gateaux differ-
entiable + (-Lipschitz continuous). We set, for some 7 > 0,

b :=1d - 7Vf

Proximal Point Algorithm (PPA) Let f € To(H). We set, for some
T >0,
® := prox,; = (Id + 79f) 1.

Forward-backward splitting Let f € 'o(H) and g € o(#H). Addition-

ally, f € Ccl’l(’H) (i.e. Gateaux differentiable + (-Lipschitz continuous). We
set, for some 7 > 0,

® := prox,,(Id — 7Vf) = (Id + 70g) *(Id — V) 34




Algorithms

Peaceman-Rachford splitting Let f € [o(#) and g € To(H). We set,
for some 7 > 0,

¢ := (2prox,, — Id) o (2prox, ¢ — Id)

Douglas-Rachford splitting Let f € I'o(7{) and g € 'o(H). We set, for
some 7 > 0,

¢ := prox,, o (2prox,¢ — Id) + Id — prox, ¢

85



Theoretical comparisons

Let f € Cll/L(H) and g € Cll/lﬁ(H) for some @ > 0 and 5 > 0.

The problem is to

imize f
minimize (x) + g(x),

under the assumption that solutions exist.

Example: Smooth TV denoising

1
minimize =||x — z||3 + xh,(Lx),
xeRN 2

o L € RV"1XN denotes the first order discrete difference operator
(Vne{l,...,N—-1}) (Lx),= %(Xn — Xp—1)
e h,: Huber loss, the smooth approximation of the /;—norm parametrized by p > 0.

h, € Cll/’i(RN‘l).

Closed form expression of Prox, .
36



Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is p—strongly convex, for some
p € ]0,a7t], and let 7 > 0. Then, the following holds:

1. Gradient descent Suppose that 7 € ]0,28a/(8 + «)[. Then,
Id — 7(Vg + V) is rg(7)—Lipschitz continuous, where

re(r) = max {|1 = 7p|,[1 = (87" + a7 M|} €]0,1[. (6)

In particular, the minimum in (1) is achieved at

. 2
T = —-—
ptrat+pt
and ) )
* o +ﬂ_ —pP
rg(t) = ———.
s(7") a l+681+p



https://arxiv.org/abs/2101.06152

Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is p—strongly convex, for some
p € ]0,a7t], and let 7 > 0. Then, the following holds:

1. FBS Suppose that 7 € ]0,2a[. Then prox,,(Id — 7Vf) is rr,(7)—Lipschitz
continuous, where

rr,(7) == max {|1 — 7p|,|1 — 7" !|} €]0,1]. (6)
In particular, the minimum in (1) is achieved at

2 at—p
pr— d * pr— .
Py an rr, (77) oTtp

*

37
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is p—strongly convex, for some
p € ]0,a7t], and let 7 > 0. Then, the following holds:

1. FBS Suppose that 7 €]0,28]. Then prox,¢(Id — 7Vg) is rr,(7)—Lipschitz

continuous, where rr,(7) == €10, 1[.In particular, the minimum in

1+7p
(1) is achieved at
1

=28 and rr(77) = 1725

37
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is p—strongly convex, for some
p € ]0,a7t], and let 7 > 0. Then, the following holds:

1. PRS (2prox,, — Id) o (2prox,; — Id) and (2prox,; — Id) o (2prox,, — Id)

are rg(7)—Lipschitz continuous, where

l-71p 7071 -1
1+7p 7a 1+1

ell) = i €10,1[. (6)
{ }

In particular, the minimum in (1) is achieved at

I o
T o= /€ and rr(7) = i Vi
p 14 J/ap

37
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is p—strongly convex, for some
p € ]0,a7t], and let 7 > 0. Then, the following holds:

1. DRS S.vg,rvr and S;vf rvg are rs(7)—Lipschitz continuous, where

1+ rr(T) B+ 12p
s =mn{FE0O P20 Ay

and rg is defined in p.16. In particular, the optimal step-size and the

minimum in (1) are

e 1 H .
(7%, rs(77)) = ( P 1+\/fo’) , FAsda
( %, 2+\2/W> , otherwise.
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Theoretical comparisons

- - 1-EA we
—1-EA r¢
- - 2FBS wy
—2FBS ry
3-FBS rp, = wnp,
- - 4-PRS wg 1
—4-PRS rp
- - 5-DRS wg
——5-DRS rg

Comparison of the convergence rates of EA, FBS, PRS, DRS for two choices of a,

B, and p. Note that optimization rates are better than cocoercive rates in general.
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Example: Smooth TV denoising

1
e First formulation: minimize =||x — z||3 + xh(Lx)
x€RN 2 ——

—
f(x) g(x)

— fis p = 1 strongly convex, a =1, and § = X||/t\|2'

1- EA: Use GT(Vg+Vf)
2- FBS: Use Tvaﬂ-vg

1
e Second formulation: min,cy =||x — z||3 + xhr, (Lr,x) + x h, (L1, x)
2 —_——

p &(x)

f(x)
p _ B

,and g = .
pxlILn, (12 p x|ILy, 12

—f is p = 1 strongly convex, a =

3- FBS 2: Use va
4- FBS 3: Use T

E,TV?

TVF,TV§
5- PRS: Use RrVﬁrVé "
6- DRS: Use S

CNTF AU F



Numerical and theoretical comparisons

Piecewise constant de-

St R BR— o s e
11| —Original B 1
72:EBA§ 10, 100, and 10000 it-
ol —as-FBS2|| |f o8 08
— - 4FBS3|| | . . o
wll ——5.pRS s o erations with y =
——6-DRS
1y "‘u " " 0.7 and . = 0.002
, . \ when considering gra-
R R e e dient descent, FBS,
PRS or DRS. Asso-
’ —ep A | ciated theoretical and
xp. 2-FBS
102 —Exp. 3-FBS2| A
ToBe e numerical convergence
104 —Exp. 6-DRS ||
T oras rates.
. —Th.3-FBS2 ||
1 —---Th. 4-FBS3
----Th. 5-PRS
WL ----Th. 6-DRS |

L L L L L
0 7000 2000 3000 2000 5000 6000 40



Numerical and theoretical comparisons

Piecewise constant de-

10000 iterations

noising estimates after
10, 100, and 10000
iterations with y =
0.7 and p = 0.0001
when considering gra-
e, dient descent, FBS,
PRS or DRS. Asso-
ciated theoretical and

numerical convergence

B aes rates.

—-—-Th. 4-FBS3 |

~---Th. 6-DRS

L \ L L L T
0 1000 2000 3000 4000 5000 5000

40



Prox versus grad: conclusion

e Douglas-Rachford and Peaceman-Rachford better theoretical and
numerical rates for piecewise constant denoising.

e Convergence rate should involve strong convexity constant but also
regularization parameter and Lipschitz constant in order to integrate

the different parameters having impact on signal and image processing.
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Prox versus grad: conclusion

e Signal and image processing problems with strongly convex objective
functions exist. Possibility to change the constant of strong convexity
when considering texture segmentation.

e Many situations where prox does not have a closed form expression:

e Even for ||Ax — z||3 if (A*A +1) not easily invertible. In practice
A=AA ... Ax.
e For data-term such as DKL or #;-norm

e Are the conclusions stays the same for non-strongly convex problems ?
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Example: Inverse problems

Double Difference RHAPSODIE (without dec.) RHAPSODIE (with dec.)

RY Lupus

— extracted from L. Denneulin, M. Langlois, E. Thiebaut, and N. Pustelnik RHAPSODIE:
Reconstruction of High-contrAst Polarized SOurces and Deconvolution for clrcumstellar
Environments, accepted to A&A, 2021.
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