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Outline

1. Proximal algorithms in signal and image processing

2. Prox versus grad for texture segmentation (numerical results)

3. Prox versus grad for piecewise constant denoising (numerical and

theoretical comparisons)
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Proximal algorithms in signal and

image processing



From wavelet transform and sparsity to proximity operator

• Wavelets: sparse representation of most natural signals.

• Filterbank implementation of a dyadic wavelet transform: F ∈ R|Ω|×|Ω|

g ∈ R|Ω| ζ = Fg 3



From wavelet transform and sparsity to proximity operator

g ζ = Fg softλ(Fg) û = F ∗softλ(Fg)

softλ(ζ) =
(

max{|ζi | − λ, 0}sign(ζi )
)
i∈Ω

= proxλ‖·‖1
(ζ)

= arg min
ν

1

2
‖ν − ζ‖2

2 + λ‖ν‖1
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Proximity operator

Definition [Moreau,1965] Let ϕ ∈ Γ0(H) where H denotes a real Hilbert

space. The proximity operator of ϕ at point x ∈ H is the unique point

denoted by proxϕx such that

(∀x ∈ H) proxϕx = arg min
y∈H

ϕ(y) +
1

2
‖x − y‖2
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Proximity operator

Definition [Moreau,1965] Let ϕ ∈ Γ0(H) where H denotes a real Hilbert

space. The proximity operator of ϕ at point x ∈ H is the unique point

denoted by proxϕx such that

(∀x ∈ H) proxϕx = arg min
y∈H

ϕ(y) +
1

2
‖x − y‖2

Examples: closed form expression

• proxλ‖·‖1
: soft-thresholding with a fixed threshold λ > 0.

• prox‖·‖2,1
[Peyré,Fadili,2011].

• prox‖·‖pp with p = {4
3 ,

3
2 , 2, 3, 4}[Chaux et al.,2005].

• proxDKL
[Combettes,Pesquet,2007].

• prox∑
g∈G ‖·‖q with overlapping groups [Jenatton et al., 2011]

• Composition with a linear operator: proxϕ◦L closed form if LL∗ = νId

[Pustelnik et al., 2012]

• and many others: Prox Repository [Chierchia et al., 2016]
5
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From wavelet transform and sparsity to proximity operator

g ζ = Fg softλ(Fg) û = F ∗softλ(Fg)

softλ(ζ) = proxλ‖·‖1
(ζ)

= arg min
ν

1

2
‖ν − ζ‖2

2 + λ‖ν‖1

û = F ∗proxλ‖·‖1
(Fg)

= proxλ‖F ·‖1
(g)

= arg min
u

1

2
‖u− g‖2
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Example: Inverse problems

• Data: We observe data g ∈ RK being a degraded version of an
original image u ∈ R|Ω| such that: g = Au + ε

• A : RK×|Ω|: denotes a linear degradation (e.g. a blur, decimation op.)

• ε : denotes a noise (e.g. Gaussian)

• Goal: Restore the degraded image i.e., find û close to ū:

û ∈ Argmin
u∈R|Ω|

1

2
‖Au− g‖2

2︸ ︷︷ ︸
Data-term

+λ ‖Du‖pp︸ ︷︷ ︸
Penalization

→ N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, J.-C. Pesquet, Wavelet-based Image
Deconvolution and Reconstruction, Wiley Encyclopedia of EEE, Feb. 2016. [PDF]
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Example: Inverse problems

• Data: We observe data g ∈ RK being a degraded version of an
original image u ∈ R|Ω| such that: g = Au + ε

• A : RK×|Ω|: denotes a linear degradation (e.g. a blur, decimation op.)

• ε : denotes a noise (e.g. Gaussian)

• Goal: Restore the degraded image i.e., find û close to ū:

û ∈ Argmin
u∈R|Ω|

1

2
‖Au− g‖2

2︸ ︷︷ ︸
Data-term

+λ ‖Du‖pp︸ ︷︷ ︸
Penalization

• Specificities of the data-term:

• Data-term differentiable with ‖A‖2-Lipschitz gradient.

• (Closed form) expression of the proximity operator for some τ > 0,

prox τ
2
‖A·−g‖2(u) = (τA∗A + Id)−1(τA∗g + u)

• Rarely strongly convex.
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Example: COVID-19 Reproduction Number R(t)

• Data/model: Poisson model to mimic the spread of an epidemic:
• R(t): propagation speed.

• g ∈ RT : Number of cases or hospitalisation for a single country or

single department. Count of daily new infections g = (gt)1≤t≤T

modelled as Poisson random variables of parameter

pt = R(t)
∑

k≥1 φ(k)gt−k .

•
∑

k≥1 φ(k)gt−k : models previous days effects.

• Goal: Estimate the reproduction number R(t) = û from the data g:

û ∈ Argmin
u∈RT

DKL(g,u� Φg)︸ ︷︷ ︸
Data-term

+λ ‖Du‖1︸ ︷︷ ︸
Penalization

with

DKL(v; g) =
∑
n

ψ(vm; gm) where ψ(vm; gm) =


−gmln(vm) + vm if vm > 0 and gm > 0

vm if vm ≥ 0 and gm = 0

+∞ otherwise
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Example: COVID-19 Reproduction Number R(t)

→ P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas,
E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to
estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via

convex optimization, PLoS One, 15(8), Aug. 2020. [PDF]
→ [Daily updates]
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Example: COVID-19 Reproduction Number R(t)

• Data/model: Poisson model to mimic the spread of an epidemic:
• R(t): propagation speed.

• g ∈ RT : Number of cases or hospitalisation for a single country or

single department. Count of daily new infections g = (gt)1≤t≤T

modelled as Poisson random variables of parameter

pt = R(t)
∑

k≥1 φ(k)gt−k .

•
∑

k≥1 φ(k)gt−k : models previous days effects.

• Goal: Estimate the reproduction number R(t) = û from the data g:

û =∈ Argmin
u∈RTN

DKL(g,u� Φg)︸ ︷︷ ︸
Data-term

+λs‖Gu‖1 + λt‖Du‖1︸ ︷︷ ︸
Penalization

with

DKL(v; g) =
∑
n

ψ(vm; gm) where ψ(vm; gm) =


−gmln(vm) + vm if vm > 0 and gm > 0

vm if vm ≥ 0 and gm = 0

+∞ otherwise
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Example: COVID-19 Reproduction Number R(t)

→ P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas,
E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to
estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via

convex optimization, PLoS One, 15(8), Aug. 2020. [PDF]
→ [Evolution along time and across France of R(t)]
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Example: COVID-19 Reproduction Number R(t)

• Data:

• g ∈ RT : Number of cases or hospitalisation for a single country or

single department.

• Φ : serial interval function (the probability of secondary infections as a

function of time after symptoms onset).

• Goal: Estimate the reproduction number R(t) = û from the data g:

û ∈ Argmin
u∈RT

DKL(g,u� Φg)︸ ︷︷ ︸
Data-term

+λ ‖Du‖1︸ ︷︷ ︸
Penalization

• Specificities of the objective function:

• Data-term differentiable but without a Lipschitz gradient.

• Closed form expression of the proximity operator associated to

DKL(g, · � Φg)

12



Non-smooth optimization

• Numerous problems in signal and image processing can be modelled as

a sum of convex functions composed with linear operators

For every s ∈ {1, . . . ,S}, fs ∈ Γ0(Gs) and Ls : R|Ω| → Gs denote a linear

operator. We aim to solve:

û ∈ Argmin
u∈R|Ω|

S∑
s=1

fs(Lsu)

• Some of them involve functions where only the proximity operator can

be considered (`1-penalization, DKL,. . . )

• Some of them involve functions where both gradient or proximity

operator can be considered (Huber function, `2
2-data-term,. . . )
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Non-smooth optimization

For every s ∈ {1, . . . ,S}, fs ∈ Γ0(Gs) and Ls : R|Ω| → Gs denote a linear

operator. We aim to solve:

û ∈ Argmin
u∈R|Ω|

S∑
s=1

fs(Lsu)

• Since 2004, numerous proximal algorithms:
[Bauschke-Combettes, 2017]

- Forward-Backward S = 2, f1 Lipschitz gradient and L2 = Id

- ADMM Invert
∑S

s=1 LsL
∗
s

- Primal-dual (Chambolle-Pock, Condat-Vũ . . .)

- . . .

• Question: When both gradient step or proximal step can be

performed, which type of step should we prefer ?
14



Prox versus grad for texture

segmentation (strongly convex

minimization problem)



Stochastic textures

• Geometric textures → periodic

• Stochastic textures

15



Stochastic textures

• Geometric textures → periodic

• Stochastic textures → scale-free ?
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Stochastic textures

• Sinusoidal signal → periodic
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• Sinusoidal signal + noise → periodic
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• Monofractal signal → scale-free
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Texture segmentation:

→ require to compute the

slope at each location
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Stochastic textures

• Sinusoidal signal → periodic
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• Sinusoidal signal + noise → periodic
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• Monofractal signal → scale-free
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Texture segmentation:

→ require to compute the

slope at each location
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From wavelets to local regularity

• Discrete wavelet transform:

F =
[
H>1,1, . . . ,H

>
J,3, L

>
J,4

]>
where

{
Hj,m ∈ R

N

4j
×N

LJ,4 ∈ R
N

4J
×N

• Wavelet coefficients at scale j ∈ {1, . . . , J} and

subband m = {1, 2, 3}:

ζj,m = Hj,mg

• Wavelet leaders at scale j and location k

[Wendt et al., 2009]

→ local supremum taken within a spatial neighborhood

across all finer scales j ′ ≤ j

Lj,k = sup
m={1,2,3}
λj′,k′⊂Λj,k

|ζj′,m,k | where

{
λj,k = [k2j , (k + 1)2j )

Λj,k =
⋃

p∈{−1,0,1}2 λj,k+p

g

ζ = Fg

17



From wavelets to local regularity: joint estimation (2)

• Behavior through the scales [Jaffard, 2004]

Lj ,n ' sn2jhn as 2j → 0

log2 Lj ,k ' log2 sn︸ ︷︷ ︸
vn

+jhn as 2j → 0.

• Data-fidelity term [Pascal, Pustelnik, Abry,

2021]

Φ(v ,h;L) =
1

2

∑
n

∑
j

(vn + jhn − log2 Lj ,n)2

=
1

2

∑
n

∥∥∥∥∥A
(
vn

hn

)
− log2 Ln

∥∥∥∥∥
2

2

where A =

1 1

1 2

.

.

.

.

.

.

1 J
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From wavelets to local regularity: joint estimation (2)

Closed form for proxΦ [Pascal, Pustelnik, Abry, 2021]

For every (v ,h) ∈ R|Ω|×R|Ω|, denoting (p,q) = proxΦ(v ,h) ∈ R|Ω|×R|Ω|

one has  p = (1+R2)(S+v)−R1(T +h)
(1+R0)(1+R2)−R2

1
,

q = (1+R0)(T +h)−R1(S+v)
(1+R0)(1+R2)−R2

1
.

where Rm =
∑

j j
m, Sn =

∑
j log2 Lj ,n, and Tn =

∑
j j log2 Lj ,n.

Proof: Rely on the closed form of(
pn

qn

)
= prox 1

2
‖A·− log2 Ln‖2

2

(
vn

hn

)
= (A∗A + Id)−1

(
A∗ log2 Ln +

(
vn

hn

))

with A =


1 1

1 2
...

...

1 J

 and thus


A∗A =

R0 R1

R1 R2


A∗ log2 Ln =

Sn
Tn


19



From wavelets to local regularity: joint estimation (2)

Strongly convex fidelity term Φ [Pascal, Pustelnik, Abry, 2021]

Function Φ(v ,h;L) is µ-strongly convex w.r.t the variables (v ,h), with

µ = χ where χ > 0 is the lowest eigenvalue of the symmetric and positive

definite matrix A∗A =

(
R0 R1

R1 R2

)
where Rm =

∑
j j

m.

Figure 1: Strong convexity constant as a function of the range of scales

involved in the estimation.
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From wavelets to local regularity: joint estimation (2)

Expression of the conjugate of Φ [Pascal, Pustelnik, Abry, 2021]

Φ∗(v ,h;L) =
1

2
〈(v ,h)>, J−1(v ,h)>〉+ 〈(S,T )>, J−1(v ,h)>〉+ C,

where 

C = 1
2〈(S,T )>, J−1(S,T )>〉 − 1

2

∑
j(log2 Lj)

2.

S =
∑

j log2 Lj

T =
∑

j j log2 Lj

J = A∗A =

R0 R1

R1 R2

 and Rm =
∑

j j
m,

21



From wavelets to local regularity: joint estimation (2)

By definition of the Fenchel conjugate,

F ∗(v ,h;L) = sup
ṽ∈R|Ω|,h̃∈R|Ω|

〈ṽ , v〉+ 〈h̃,h〉 − F (ṽ , h̃;L). (1)

The supremum is obtained at (v̄ , h̄) such that, for every n ∈ Ω,{
vn −

∑
j

(
v̄n + j h̄n − log2 Lj,n

)
= 0

hn −
∑

j j
(
v̄n + j h̄n − log2 Lj,n

)
= 0.

(2)

or equivalently, {
R0v̄n + R1h̄n = vn + Sn
R1v̄n + R2h̄n = hn + Tn

(3)

that yields (
v̄n
h̄n

)
= J−1

(
vn + Sn
hn + Tn

)
(4)

22



From wavelets to local regularity: joint estimation (2)

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation

[Pascal, Pustelnik, Abry, ACHA, 2021]

Find (v̂, ĥ) ∈ Argmin
v,h

∑
j ‖ log2 Lj − v− jh‖2

2 + λ
∥∥[Dv ;αDh

]>∥∥
2,1︸ ︷︷ ︸

TVα

where TVα couples spatial variations of v and h and thus favor their oc-

currences at same location.

+ Combined estimation and segmentation.

+ Joint estimation of the local variance and local regularity.

+ Strongly convex.

+ Closed form expression of the proximity operator associated to the

data-fidelity term.

+ Dual formulation possible.

23



From wavelets to local regularity: joint estimation (2)

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation

[Pascal, Pustelnik, Abry, ACHA, 2021]

Find (v̂, ĥ) ∈ Argmin
v,h

∑
j ‖ log2 Lj − v− jh‖2

2 + λ
∥∥[Dv ;αDh

]>∥∥
2,1︸ ︷︷ ︸

TVα

where TVα couples spatial variations of v and h and thus favor their oc-

currences at same location.

Algorithmic solutions:

• Accelerated strongly convex Chambolle-Pock algorithm.

• FISTA on the dual [Chambolle-Dossal, 2015].

24
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Two-step versus one-step texture segmentation
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Two-step versus one-step texture segmentation

Mask Synthetic texture Optimal solution

T-ROF Matrix factorization Proposed

[Cai2013] [Yuan2015] [Pascal2019]

⇒ Illustration of Interface detection on a piecewise fractal textured image

that mimics a multiphasic flow.
28



Results on multiphase flow data

0
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2

[Arbelaez et al. 2011] [Yuan et al. 2015] T-ROF PLOVER
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Results on multiphase flow data
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Prox versus grad on texture segmentation: conclusions

• Joint estimation and segmentation formulated as a strongly convex

minimization problem. → Fast algorithmic procedure. Application to

large-scale problems.

• Chambolle-Pock using strong convexity faster than FISTA on the

dual. → Proximal step faster than gradient step based on numerical

comparisons.

• Matlab toolbox including automatic tuning of the hyperparameters :

GitHub (bpascal-fr/gsugar)

31
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Prox versus grad



Non-smooth optimization: large-scale data

û ∈ Argmin
u∈H

f (u) + g(u) (5)

• Activating f and g via proximal steps can be advantageous

numerically [Combettes, Glaudin,2019]

• The choice of the most efficient algorithm for a specific data

processing problem with the form of (5) is a complicated task.

• Convergence rate is an useful tool in order to provide a theoretical

comparison among algorithms.

• The theoretical behaviour of an algorithmic scheme may differ

considerably from its numerical efficiency, which enlightens the

importance of obtaining sharp convergence rates exploiting the

properties of f and g .
32



Prox versus grad

û ∈ Argmin
u∈H

f (u) + g(u)

• Sharp linear convergence rates can be obtained for several splitting

algorithms under strong convexity of f and/or g . [Giselsson,

Boyd,2017][Davis, Yin,2017] [Taylor,Hendrickx,Glineur,2018] [Ryu,

Hannah, Yin,2019] [Ryu, Taylor, Bergeling, Gilsesson,2019]

• Sub-linear convergence rates of some first order methods depending

on the KL-exponent are obtained in when f + g is a KL-function.

([Attouch, Bolte, Svaiter,2013][Bolte, Daniilidis, Lewis,2006]. →
KL-exponents are usually difficult to compute.

33



Algorithms

Gradient method Let f ∈ Γ0(H) and f ∈ C 1,1
ζ (H) (i.e. Gâteaux differ-

entiable + ζ-Lipschitz continuous). We set, for some τ > 0,

Φ := Id− τ∇f

Proximal Point Algorithm (PPA) Let f ∈ Γ0(H). We set, for some

τ > 0,

Φ := proxτ f = (Id + τ∂f )−1.

Forward-backward splitting Let f ∈ Γ0(H) and g ∈ Γ0(H). Addition-

ally, f ∈ C 1,1
ζ (H) (i.e. Gâteaux differentiable + ζ-Lipschitz continuous). We

set, for some τ > 0,

Φ := proxτg (Id− τ∇f ) = (Id + τ∂g)−1(Id− τ∇f ) 34



Algorithms

Peaceman-Rachford splitting Let f ∈ Γ0(H) and g ∈ Γ0(H). We set,

for some τ > 0,

Φ := (2proxτg − Id) ◦ (2proxτ f − Id)

Douglas-Rachford splitting Let f ∈ Γ0(H) and g ∈ Γ0(H). We set, for

some τ > 0,

Φ := proxτg ◦ (2proxτ f − Id) + Id− proxτ f

35



Theoretical comparisons

Let f ∈ C 1,1
1/α(H) and g ∈ C 1,1

1/β(H), for some α > 0 and β > 0.

The problem is to

minimize
x∈H

f (x) + g(x),

under the assumption that solutions exist.

Example: Smooth TV denoising

minimize
x∈RN

1

2
‖x − z‖2

2 + χhµ(Lx),

• L ∈ RN−1×N denotes the first order discrete difference operator

(∀n ∈ {1, . . . ,N − 1}) (Lx)n = 1
2
(xn − xn−1)

• hµ: Huber loss, the smooth approximation of the `1−norm parametrized by µ > 0.

hµ ∈ C 1,1
1/µ(RN−1).

Closed form expression of proxhµ
.

36



Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is ρ−strongly convex, for some

ρ ∈
]
0, α−1

[
, and let τ > 0. Then, the following holds:

1. Gradient descent Suppose that τ ∈ ]0, 2βα/(β + α)[. Then,

Id− τ(∇g +∇f ) is rG (τ)−Lipschitz continuous, where

rG (τ) := max
{
|1− τρ|, |1− τ(β−1 + α−1)|

}
∈ ]0, 1[ . (6)

In particular, the minimum in (1) is achieved at

τ∗ =
2

ρ+ α−1 + β−1

and

rG (τ∗) =
α−1 + β−1 − ρ
α−1 + β−1 + ρ

.

37
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is ρ−strongly convex, for some

ρ ∈
]
0, α−1

[
, and let τ > 0. Then, the following holds:

1. FBS Suppose that τ ∈ ]0, 2α[. Then proxτg (Id− τ∇f ) is rT1 (τ)−Lipschitz

continuous, where

rT1 (τ) := max
{
|1− τρ|, |1− τα−1|

}
∈ ]0, 1[ . (6)

In particular, the minimum in (1) is achieved at

τ∗ =
2
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is ρ−strongly convex, for some

ρ ∈
]
0, α−1

[
, and let τ > 0. Then, the following holds:

1. FBS Suppose that τ ∈ ]0, 2β]. Then proxτ f (Id− τ∇g) is rT2 (τ)−Lipschitz

continuous, where rT2 (τ) :=
1

1 + τρ
∈ ]0, 1[ .In particular, the minimum in

(1) is achieved at

τ∗ = 2β and rT2 (τ∗) =
1

1 + 2βρ
.
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is ρ−strongly convex, for some

ρ ∈
]
0, α−1

[
, and let τ > 0. Then, the following holds:

1. PRS (2proxτg − Id) ◦ (2proxτ f − Id) and (2proxτ f − Id) ◦ (2proxτg − Id)

are rR(τ)−Lipschitz continuous, where

rR(τ) = max

{
1− τρ
1 + τρ

,
τα−1 − 1

τα−1 + 1

}
∈ ]0, 1[ . (6)

In particular, the minimum in (1) is achieved at

τ∗ =

√
α

ρ
and rR(τ∗) =

1−√αρ
1 +
√
αρ
.
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Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references)

In the context of Problem p.16, suppose that f is ρ−strongly convex, for some

ρ ∈
]
0, α−1

[
, and let τ > 0. Then, the following holds:

1. DRS Sτ∇g ,τ∇f and Sτ∇f ,τ∇g are rS(τ)−Lipschitz continuous, where

rS(τ) = min

{
1 + rR(τ)

2
,

β + τ 2ρ

β + τβρ+ τ 2ρ

}
∈ ]0, 1[ (6)

and rR is defined in p.16. In particular, the optimal step-size and the

minimum in (1) are

(τ∗, rS(τ∗)) =


(√

α
ρ ,

1
1+
√
αρ

)
, if β ≤ 4α;(√

β
ρ ,

2
2+
√
βρ

)
, otherwise.
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Theoretical comparisons
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Comparison of the convergence rates of EA, FBS, PRS, DRS for two choices of α,

β, and ρ. Note that optimization rates are better than cocoercive rates in general.
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Example: Smooth TV denoising

• First formulation: minimize
x∈RN

1

2
‖x − z‖2

2︸ ︷︷ ︸
f (x)

+χh(Lx)︸ ︷︷ ︸
g(x)

→ f is ρ = 1 strongly convex, α = 1, and β = µ
χ‖L‖2 .

1- EA: Use Gτ(∇g+∇f )

2- FBS: Use Tτ∇f ,τ∇g

• Second formulation: minx∈H
1

2
‖x − z‖2

2 + χhI1(LI1x)︸ ︷︷ ︸
f̃ (x)

+χhI2(LI2x)︸ ︷︷ ︸
g̃(x)

→f̃ is ρ = 1 strongly convex, α = µ
µ+χ‖LI2‖

2 , and β = µ
χ‖LI1‖

2 .

3- FBS 2: Use T
τ∇g̃ ,τ∇f̃

4- FBS 3: Use T
τ∇f̃ ,τ∇g̃

5- PRS: Use R
τ∇f̃ ,τ∇g̃

6- DRS: Use S
τ∇f̃ ,τ∇g̃
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Numerical and theoretical comparisons
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Numerical and theoretical comparisons
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ciated theoretical and

numerical convergence

rates.
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Prox versus grad: conclusion

• Douglas-Rachford and Peaceman-Rachford better theoretical and

numerical rates for piecewise constant denoising.

• Convergence rate should involve strong convexity constant but also

regularization parameter and Lipschitz constant in order to integrate

the different parameters having impact on signal and image processing.
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Prox versus grad: conclusion

• Signal and image processing problems with strongly convex objective

functions exist. Possibility to change the constant of strong convexity

when considering texture segmentation.

• Many situations where prox does not have a closed form expression:

• Even for ‖Ax − z‖2
2 if (A∗A + I) not easily invertible. In practice

A = A1A2 . . .AK .

• For data-term such as DKL or `1-norm

• Are the conclusions stays the same for non-strongly convex problems ?

42



Example: Inverse problems

→ extracted from L. Denneulin, M. Langlois, E. Thiebaut, and N. Pustelnik RHAPSODIE:
Reconstruction of High-contrAst Polarized SOurces and Deconvolution for cIrcumstellar
Environments, accepted to A&A, 2021.
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