Proximal step versus gradient descent step in signal and image processing

Séminaire Français d'Optimisation – May 20th, 2021

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

Patrice Abry CNRS, Ens Lyon

Luis Briceño Arias Univ. Técnica Federico Santa María Chile

Barbara Pascal Univ. Lille

- 1. Proximal algorithms in signal and image processing
- 2. Prox versus grad for texture segmentation (numerical results)
- 3. Prox versus grad for piecewise constant denoising (numerical and theoretical comparisons)

Proximal algorithms in signal and image processing

From wavelet transform and sparsity to proximity operator

- Wavelets: sparse representation of most natural signals.
- Filterbank implementation of a dyadic wavelet transform: $F \in \mathbb{R}^{|\Omega| imes |\Omega|}$

 $\zeta = Fg$

From wavelet transform and sparsity to proximity operator

g

$$\operatorname{soft}_{\lambda}(\boldsymbol{\zeta}) = \left(\max\{|\zeta_{\underline{i}}| - \lambda, 0\}\operatorname{sign}(\zeta_{\underline{i}})\right)_{\underline{i} \in \Omega}$$
$$= \operatorname{prox}_{\lambda \| \cdot \|_{1}}(\boldsymbol{\zeta})$$
$$= \arg\min_{\boldsymbol{\nu}} \frac{1}{2} \|\boldsymbol{\nu} - \boldsymbol{\zeta}\|_{2}^{2} + \lambda \|\boldsymbol{\nu}\|_{1}$$

Proximity operator

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

Proximity operator

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

Examples: closed form expression

- $\operatorname{prox}_{\lambda \| \cdot \|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
- prox_{∥·∥2,1}[Peyré,Fadili,2011].
- $\operatorname{prox}_{\|\cdot\|_p^p}$ with $p = \{\frac{4}{3}, \frac{3}{2}, 2, 3, 4\}$ [Chaux et al.,2005].
- $\operatorname{prox}_{D_{KL}}$ [Combettes,Pesquet,2007].
- $\mathrm{prox}_{\sum_{g\in\mathcal{G}}\|\cdot\|_q}$ with overlapping groups [Jenatton et al., 2011]
- Composition with a linear operator: $prox_{\varphi \circ L}$ closed form if $LL^* = \nu Id$ [Pustelnik et al., 2012]
- and many others: Prox Repository [Chierchia et al., 2016]

From wavelet transform and sparsity to proximity operator

g

$$\zeta = F\mathbf{g}$$

$$\begin{split} \operatorname{soft}_{\lambda}(\boldsymbol{\zeta}) &= \operatorname{prox}_{\lambda \| \cdot \|_{1}}(\boldsymbol{\zeta}) \\ &= \arg\min_{\boldsymbol{\nu}} \frac{1}{2} \| \boldsymbol{\nu} - \boldsymbol{\zeta} \|_{2}^{2} + \lambda \| \boldsymbol{\nu} \|_{1} \end{split}$$

$$\begin{aligned} \widehat{\mathbf{u}} &= F^* \operatorname{prox}_{\lambda \| \cdot \|_1} (F \mathbf{g}) \\ &= \operatorname{prox}_{\lambda \| F \cdot \|_1} (\mathbf{g}) \\ &= \arg \min_{\mathbf{u}} \frac{1}{2} \| \mathbf{u} - \mathbf{g} \|_2^2 + \lambda \| F \mathbf{u} \|_1 \end{aligned}$$

Example: Inverse problems

- Data: We observe data g ∈ ℝ^K being a degraded version of an original image ū ∈ ℝ^{|Ω|} such that: g = Aū + ε
 - $A : \mathbb{R}^{K \times |\Omega|}$: denotes a linear degradation (e.g. a blur, decimation op.)
 - ε : denotes a noise (e.g. Gaussian)
- \bullet Goal: Restore the degraded image i.e., find \widehat{u} close to $\bar{u} :$

 \rightarrow N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, J.-C. Pesquet, Wavelet-based Image Deconvolution and Reconstruction, Wiley Encyclopedia of EEE, Feb. 2016. [PDF]

Example: Inverse problems

- Data: We observe data g ∈ ℝ^K being a degraded version of an original image ū ∈ ℝ^{|Ω|} such that: g = Aū + ε
 - $A : \mathbb{R}^{K \times |\Omega|}$: denotes a linear degradation (e.g. a blur, decimation op.)
 - ε : denotes a noise (e.g. Gaussian)
- \bullet Goal: Restore the degraded image i.e., find \widehat{u} close to $\bar{u} :$

$$\widehat{\mathbf{u}} \in \underset{\mathbf{u} \in \mathbb{R}^{|\Omega|}}{\operatorname{Argmin}} \underbrace{\frac{1}{2} \|A\mathbf{u} - \mathbf{g}\|_{2}^{2}}_{\operatorname{Data-term}} + \lambda \underbrace{\|D\mathbf{u}\|_{p}^{p}}_{\operatorname{Penalization}}$$

- Specificities of the data-term:
 - Data-term differentiable with $||A||^2$ -Lipschitz gradient.
 - (Closed form) expression of the proximity operator for some au > 0,

$$\operatorname{prox}_{\frac{\tau}{2} \| A \cdot - \mathbf{g} \|^2}(\mathbf{u}) = (\tau A^* A + \operatorname{Id})^{-1} (\tau A^* \mathbf{g} + \mathbf{u})$$

• Rarely strongly convex.

- Data/model: Poisson model to mimic the spread of an epidemic:
 - *R*(*t*): propagation speed.

DKL

- $\mathbf{g} \in \mathbb{R}^T$: Number of cases or hospitalisation for a single country or single department. Count of daily new infections $\mathbf{g} = (g_t)_{1 \le t \le T}$ modelled as Poisson random variables of parameter $p_t = R(t) \sum_{k>1} \phi(k) g_{t-k}$
- $\sum_{k>1} \phi(k) g_{t-k}$: models previous days effects.
- Goal: Estimate the reproduction number $R(t) = \hat{\mathbf{u}}$ from the data g:

$$\widehat{\mathbf{u}} \in \underset{\mathbf{u} \in \mathbb{R}^{T}}{\operatorname{Argmin}} \underbrace{\operatorname{DKL}(\mathbf{g}, \mathbf{u} \odot \Phi \mathbf{g})}_{\operatorname{Data-term}} + \lambda \underbrace{\|\mathcal{D}\mathbf{u}\|_{1}}_{\operatorname{Penalization}}$$
with
$$\operatorname{DKL}(\mathbf{v}; \mathbf{g}) = \sum_{n} \psi(\mathbf{v}_{m}; g_{m}) \quad \text{where} \quad \psi(\mathbf{v}_{m}; g_{m}) = \begin{cases} -g_{m} \ln(\mathbf{v}_{m}) + \mathbf{v}_{m} & \text{if } \mathbf{v}_{m} > 0 \text{ and } g_{m} > 0 \\ \mathbf{v}_{m} & \text{if } \mathbf{v}_{m} \ge 0 \text{ and } g_{m} = 0 \\ +\infty & \text{otherwise} \end{cases}$$

 \rightarrow [Daily updates]

- Data/model: Poisson model to mimic the spread of an epidemic:
 - R(t): propagation speed.

with

- g ∈ ℝ^T: Number of cases or hospitalisation for a single country or single department. Count of daily new infections g = (g_t)_{1≤t≤T} modelled as Poisson random variables of parameter p_t = R(t) ∑_{k≥1} φ(k)g_{t-k}.
- $\sum_{k\geq 1} \phi(k)g_{t-k}$: models previous days effects.
- Goal: Estimate the reproduction number $R(t) = \hat{\mathbf{u}}$ from the data **g**:

$$\widehat{\mathbf{u}} = \in \underset{\mathbf{u} \in \mathbb{R}^{TN}}{\operatorname{Argmin}} \underbrace{\operatorname{DKL}(\mathbf{g}, \mathbf{u} \odot \Phi \mathbf{g})}_{\operatorname{Data-term}} + \underbrace{\lambda_s \| G \mathbf{u} \|_1 + \lambda_t \| D \mathbf{u} \|_1}_{\operatorname{Penalization}}$$

$$\mathbf{v}; \mathbf{g}) = \sum_n \psi(\mathbf{v}_m; g_m) \quad \text{where} \quad \psi(\mathbf{v}_m; g_m) = \begin{cases} -g_m \ln(\mathbf{v}_m) + \mathbf{v}_m & \text{if } \mathbf{v}_m > 0 \text{ and } g_m > 0 \\ \mathbf{v}_m & \text{if } \mathbf{v}_m \ge 0 \text{ and } g_m = 0 \\ +\infty & \text{otherwise} \end{cases}$$

→ P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas,
 E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to
 estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via
 convex optimization, PLoS One, 15(8), Aug. 2020. [PDF]
 → [Evolution along time and across France of R(t)]

- Data:
 - g ∈ ℝ^T : Number of cases or hospitalisation for a single country or single department.
 - Φ : serial interval function (the probability of secondary infections as a function of time after symptoms onset).
- Goal: Estimate the reproduction number $R(t) = \hat{\mathbf{u}}$ from the data g:

$$\widehat{\mathbf{u}} \in \underset{\mathbf{u} \in \mathbb{R}^{T}}{\operatorname{Argmin}} \underbrace{\operatorname{DKL}(\mathbf{g}, \mathbf{u} \odot \Phi \mathbf{g})}_{\operatorname{Data-term}} + \lambda \underbrace{\| D \mathbf{u} \|_{1}}_{\operatorname{Penalization}}$$

- Specificities of the objective function:
 - Data-term differentiable but without a Lipschitz gradient.
 - \bullet Closed form expression of the proximity operator associated to ${\rm DKL}({\bf g},\cdot\odot\Phi{\bf g})$

• Numerous problems in signal and image processing can be modelled as a sum of convex functions composed with linear operators

For every $s \in \{1, \ldots, S\}$, $f_s \in \Gamma_0(\mathcal{G}_s)$ and $L_s \colon \mathbb{R}^{|\Omega|} \to \mathcal{G}_s$ denote a linear operator. We aim to solve: $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^{|\Omega|}} \sum_{s=1}^{S} f_s(L_s \mathbf{u})$

- Some of them involve functions where only the proximity operator can be considered (*l*₁-penalization, DKL,...)
- Some of them involve functions where both gradient or proximity operator can be considered (Huber function, l²₂-data-term,...)

For every $s \in \{1, \ldots, S\}$, $f_s \in \Gamma_0(\mathcal{G}_s)$ and $L_s \colon \mathbb{R}^{|\Omega|} \to \mathcal{G}_s$ denote a linear operator. We aim to solve: $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^{|\Omega|}} \sum_{s=1}^{S} f_s(L_s \mathbf{u})$

- Since 2004, numerous proximal algorithms: [Bauschke-Combettes, 2017]
 - Forward-Backward S= 2, f_1 Lipschitz gradient and $L_2={
 m Id}$
 - ADMM Invert $\sum_{s=1}^{S} L_s L_s^*$
 - Primal-dual (Chambolle-Pock, Condat-Vũ ...)
 - . . .
- Question: When both gradient step or proximal step can be performed, which type of step should we prefer ?

Prox versus grad for texture segmentation (strongly convex minimization problem)

• Geometric textures \rightarrow periodic

• Stochastic textures

• Geometric textures \rightarrow periodic

• Stochastic textures \rightarrow scale-free ?

• Sinusoidal signal \rightarrow periodic

• Sinusoidal signal + noise \rightarrow periodic

• Monofractal signal \rightarrow scale-free

• Sinusoidal signal \rightarrow periodic

• Sinusoidal signal + noise \rightarrow periodic

• Monofractal signal \rightarrow scale-free

loa frequenc

Texture segmentation: \rightarrow require to compute the slope at each location v_1 v_2 h_1 h_2 h_2 h_1 h_2 h_2 h_2 h_2 h_2 h_2 h_3 h_2 h_3 h_3 h_2 h_3 h_3

From wavelets to local regularity

- Discrete wavelet transform: $F = \begin{bmatrix} H_{1,1}^{\top}, \dots, H_{J,3}^{\top}, L_{J,4}^{\top} \end{bmatrix}^{\top} \text{ where } \begin{cases} H_{j,m} \in \mathbb{R}^{\frac{N}{4^{j}} \times N} \\ L_{J,4} \in \mathbb{R}^{\frac{N}{4^{j}} \times N} \end{cases}$
- Wavelet coefficients at scale j ∈ {1,..., J} and subband m = {1,2,3}:

$$\zeta_{j,m}=H_{j,m}\mathbf{g}$$

• Wavelet leaders at scale *j* and location *k*

[Wendt et al., 2009]

 \rightarrow local supremum taken within a spatial neighborhood across all finer scales $j' \leq j$

$$\boxed{ \mathcal{L}_{j,\underline{k}} = \sup_{\substack{m = \{1,2,3\}\\\lambda_{j',\underline{k}'} \subset \Lambda_{j,\underline{k}}}} |\zeta_{j',m,\underline{k}}| } \text{ when }$$

where
$$\begin{cases} \lambda_{j,\underline{k}} = [\underline{k}2^{j}, (\underline{k}+1)2^{j}) \\ \Lambda_{j,\underline{k}} = \bigcup_{\rho \in \{-1,0,1\}^{2}} \lambda_{j,\underline{k}+\rho} \end{cases}$$

From wavelets to local regularity: joint estimation (2)

• Behavior through the scales [Jaffard, 2004]

 $\mathcal{L}_{j,\underline{n}}\simeq s_{\underline{n}}2^{jh_{\underline{n}}}$ as $2^{j}
ightarrow 0$

$$\log_2 \mathcal{L}_{j,\underline{k}} \simeq \underbrace{\log_2 s_{\underline{n}}}_{v_{\underline{n}}} + jh_{\underline{n}} \quad \text{as} \quad 2^j \to 0.$$

• Data-fidelity term [Pascal, Pustelnik, Abry, 2021]

$$\Phi(\mathbf{v}, \mathbf{h}; \mathcal{L}) = \frac{1}{2} \sum_{\underline{n}} \sum_{j} (v_{\underline{n}} + jh_{\underline{n}} - \log_2 \mathcal{L}_{j,\underline{n}})^2$$
$$= \frac{1}{2} \sum_{\underline{n}} \left\| A \begin{pmatrix} v_{\underline{n}} \\ h_{\underline{n}} \end{pmatrix} - \log_2 \mathcal{L}_{\underline{n}} \right\|_2^2 \quad \text{where} \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & j \end{pmatrix}$$
(18)

Closed form for $\operatorname{prox}_{\Phi}$ [Pascal, Pustelnik, Abry, 2021] For every $(\boldsymbol{v}, \boldsymbol{h}) \in \mathbb{R}^{|\Omega|} \times \mathbb{R}^{|\Omega|}$, denoting $(\boldsymbol{p}, \boldsymbol{q}) = \operatorname{prox}_{\Phi}(\boldsymbol{v}, \boldsymbol{h}) \in \mathbb{R}^{|\Omega|} \times \mathbb{R}^{|\Omega|}$ one has

$$egin{aligned} m{
ho} &= rac{(1+R_2)(m{\mathcal{S}}+m{v})-R_1(m{\mathcal{T}}+m{h})}{(1+R_0)(1+R_2)-R_1^2}, \ m{q} &= rac{(1+R_0)(m{\mathcal{T}}+m{h})-R_1(m{\mathcal{S}}+m{v})}{(1+R_0)(1+R_2)-R_1^2}. \end{aligned}$$

where $R_m = \sum_j j^m$, $S_{\underline{n}} = \sum_j \log_2 \mathcal{L}_{j,\underline{n}}$, and $\mathcal{T}_{\underline{n}} = \sum_j j \log_2 \mathcal{L}_{j,\underline{n}}$.

Proof: Rely on the closed form of
$$\begin{pmatrix} p_{\underline{n}} \\ q_{\underline{n}} \end{pmatrix} = \operatorname{prox}_{\frac{1}{2} ||A - \log_2 \mathcal{L}_{\underline{n}}||_2^2} \begin{pmatrix} v_{\underline{n}} \\ h_{\underline{n}} \end{pmatrix} = (A^*A + \operatorname{Id})^{-1} \left(A^* \log_2 \mathcal{L}_{\underline{n}} + \begin{pmatrix} v_{\underline{n}} \\ h_{\underline{n}} \end{pmatrix} \right)$$
with $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & J \end{pmatrix}$ and thus $\begin{cases} A^*A = \begin{pmatrix} R_0 & R_1 \\ R_1 & R_2 \end{pmatrix} \\ A^* \log_2 \mathcal{L}_{\underline{n}} = \begin{pmatrix} S_{\underline{n}} \\ T_{\underline{n}} \end{pmatrix} \end{cases}$

From wavelets to local regularity: joint estimation (2)

Strongly convex fidelity term Φ [Pascal, Pustelnik, Abry, 2021] Function $\Phi(\mathbf{v}, \mathbf{h}; \mathcal{L})$ is μ -strongly convex w.r.t the variables (\mathbf{v}, \mathbf{h}) , with $\mu = \chi$ where $\chi > 0$ is the lowest eigenvalue of the symmetric and positive definite matrix $A^*A = \begin{pmatrix} R_0 & R_1 \\ R_1 & R_2 \end{pmatrix}$ where $R_m = \sum_j j^m$.

From wavelets to local regularity: joint estimation (2)

Expression of the conjugate of
$$\Phi$$
 [Pascal, Pustelnik, Abry, 2021]
 $\Phi^*(\mathbf{v}, \mathbf{h}; \mathcal{L}) = \frac{1}{2} \langle (\mathbf{v}, \mathbf{h})^\top, \mathbf{J}^{-1}(\mathbf{v}, \mathbf{h})^\top \rangle + \langle (\mathcal{S}, \mathcal{T})^\top, \mathbf{J}^{-1}(\mathbf{v}, \mathbf{h})^\top \rangle + \mathcal{C},$
where
 $\begin{cases}
\mathcal{C} &= \frac{1}{2} \langle (\mathcal{S}, \mathcal{T})^\top, \mathbf{J}^{-1}(\mathcal{S}, \mathcal{T})^\top \rangle - \frac{1}{2} \sum_j (\log_2 \mathcal{L}_j)^2. \\
\mathcal{S} &= \sum_j \log_2 \mathcal{L}_j \\
\mathcal{T} &= \sum_j j \log_2 \mathcal{L}_j \\
\mathcal{T} &= \sum_j j \log_2 \mathcal{L}_j \\
\mathcal{J} &= A^* A = \begin{pmatrix} R_0 & R_1 \\ R_1 & R_2 \end{pmatrix} \text{ and } R_m = \sum_j j^m,
\end{cases}$

By definition of the Fenchel conjugate,

$$F^{*}(\boldsymbol{\nu},\boldsymbol{h};\mathcal{L}) = \sup_{\widetilde{\boldsymbol{\nu}}\in\mathbb{R}^{|\Omega|},\widetilde{\boldsymbol{h}}\in\mathbb{R}^{|\Omega|}} \langle \widetilde{\boldsymbol{\nu}},\boldsymbol{\nu} \rangle + \langle \widetilde{\boldsymbol{h}},\boldsymbol{h} \rangle - F(\widetilde{\boldsymbol{\nu}},\widetilde{\boldsymbol{h}};\mathcal{L}).$$
(1)

The supremum is obtained at $(\bar{\boldsymbol{v}}, \bar{\boldsymbol{h}})$ such that, for every $\underline{n} \in \Omega$,

$$\begin{cases} v_{\underline{n}} - \sum_{j} \left(\bar{v}_{\underline{n}} + j \bar{h}_{\underline{n}} - \log_2 \mathcal{L}_{j,\underline{n}} \right) = 0\\ h_{\underline{n}} - \sum_{j} j \left(\bar{v}_{\underline{n}} + j \bar{h}_{\underline{n}} - \log_2 \mathcal{L}_{j,\underline{n}} \right) = 0. \end{cases}$$
(2)

or equivalently,

$$\begin{cases} R_0 \bar{v}_{\underline{n}} + R_1 \bar{h}_{\underline{n}} = v_{\underline{n}} + S_{\underline{n}} \\ R_1 \bar{v}_{\underline{n}} + R_2 \bar{h}_{\underline{n}} = h_{\underline{n}} + \mathcal{T}_{\underline{n}} \end{cases}$$
(3)

that yields

$$\begin{pmatrix} \overline{v}_{\underline{n}} \\ \overline{h}_{\underline{n}} \end{pmatrix} = \mathbf{J}^{-1} \begin{pmatrix} v_{\underline{n}} + \mathcal{S}_{\underline{n}} \\ h_{\underline{n}} + \mathcal{T}_{\underline{n}} \end{pmatrix}$$
(4)

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation [Pascal, Pustelnik, Abry, ACHA, 2021] Find $(\hat{\mathbf{v}}, \hat{\mathbf{h}}) \in \underset{\mathbf{v}, \mathbf{h}}{\operatorname{Argmin}} \sum_{j} \|\log_2 \mathcal{L}_j - \mathbf{v} - j\mathbf{h}\|_2^2 + \lambda \underbrace{\|[\mathbf{D}\mathbf{v}; \alpha \mathbf{D}\mathbf{h}]^\top\|_{2,1}}_{\operatorname{TV}_{\alpha}}$

where TV_{α} couples spatial variations of ${\bf v}$ and ${\bf h}$ and thus favor their occurrences at same location.

- + Combined estimation and segmentation.
- + Joint estimation of the local variance and local regularity.
- + Strongly convex.
- + Closed form expression of the proximity operator associated to the data-fidelity term.
- + Dual formulation possible.

PLOVER: Piecewise constant LOcal VariancE and Regularity estimation [Pascal, Pustelnik, Abry, ACHA, 2021] Find $(\hat{\mathbf{v}}, \hat{\mathbf{h}}) \in \underset{\mathbf{v}, \mathbf{h}}{\operatorname{Argmin}} \sum_{j} \|\log_2 \mathcal{L}_j - \mathbf{v} - j\mathbf{h}\|_2^2 + \lambda \underbrace{\|[\mathbf{D}\mathbf{v}; \alpha \mathbf{D}\mathbf{h}]^\top\|_{2,1}}_{\operatorname{TV}_{\alpha}}$

where TV_{α} couples spatial variations of **v** and **h** and thus favor their occurrences at same location.

Algorithmic solutions:

- Accelerated strongly convex Chambolle-Pock algorithm.
- FISTA on the dual [Chambolle-Dossal, 2015].

Algorithm 5: PD_C: Coupled estimation (Pb. (12))

Initialization:

Set
$$\boldsymbol{v}^{[0]} \in \mathbb{R}^{|\Upsilon|}$$
, $\boldsymbol{u}^{[0]} = \mathbf{D}\boldsymbol{v}^{[0]}$, $\bar{\boldsymbol{u}}^{[0]} = \boldsymbol{u}^{[0]}$;
Set $\boldsymbol{h}^{[0]} \in \mathbb{R}^{|\Upsilon|}$, $\boldsymbol{\ell}^{[0]} = \alpha \mathbf{D}\boldsymbol{h}^{[0]}$, $\bar{\boldsymbol{\ell}}^{[0]} = \boldsymbol{\ell}^{[0]}$;
Set $\alpha > 0$ and $\lambda > 0$.
Set (δ_0, ν_0) such that $\delta_0 \nu_0 \max(1, \alpha) \|\mathbf{D}\|^2 < 1$;

for $t \in \mathbb{N}^*$ do Primal variable update: $\begin{pmatrix} \boldsymbol{v}^{[t+1]} \\ \boldsymbol{h}^{[t+1]} \end{pmatrix} = \operatorname{prox}_{\delta_t \Phi} \left(\begin{pmatrix} \boldsymbol{v}^{[t]} \\ \boldsymbol{h}^{[t]} \end{pmatrix} - \delta_t \begin{pmatrix} \mathbf{D}^* \bar{\boldsymbol{u}}^{[t]} \\ \alpha \mathbf{D}^* \bar{\boldsymbol{\ell}}^{[t]} \end{pmatrix} \right)$ Dual variable update: $\begin{pmatrix} \boldsymbol{u}^{[t+1]} \\ \boldsymbol{\ell}^{[t+1]} \end{pmatrix} = \operatorname{prox}_{\nu_t(\lambda \parallel, \parallel_{2,1})^*} \begin{pmatrix} \boldsymbol{u}^{[t]} + \nu_t \mathbf{D} \boldsymbol{v}^{[t]} \\ \boldsymbol{\ell}^{[t]} + \nu_t \alpha \mathbf{D} \boldsymbol{h}^{[t]} \end{pmatrix}$ Descent steps update: $\vartheta_t = (1 + 2\mu\delta_t)^{-1/2}, \, \delta_{t+1} = \vartheta_t\delta_t, \, \nu_{t+1} = \nu_t/\vartheta_t$ Auxiliary variable update: $\left| \begin{array}{c} \left(\bar{\boldsymbol{u}}^{[t+1]}_{\bar{\boldsymbol{\rho}}^{[t+1]}} \right) = \left(\boldsymbol{u}^{[t+1]}_{\boldsymbol{\ell}^{[t+1]}} \right) + \vartheta_t \left(\left(\boldsymbol{u}^{[t+1]}_{\boldsymbol{\ell}^{[t+1]}} \right) - \left(\boldsymbol{u}^{[t]}_{\boldsymbol{\ell}^{[t]}} \right) \right)$ Algorithm 3: FISTA_C: Coupled estimation (Pb. (12))

$$\begin{split} \textbf{Initialization:} & \text{Set } \boldsymbol{u}^{[0]} \in \mathbb{R}^{2 \times |\Upsilon|}, \ \boldsymbol{\bar{u}}^{[0]} = \boldsymbol{u}^{[0]}; \\ & \text{Set } \boldsymbol{\ell}^{[0]} \in \mathbb{R}^{2 \times |\Upsilon|}, \ \boldsymbol{\bar{\ell}}^{[0]} = \boldsymbol{\ell}^{[0]}; \\ & \text{Let } (\mathcal{S}_{\underline{n}}, \mathcal{T}_{\underline{n}}) \text{ defined in } (4); \\ & \text{Let } \mathbf{J} \text{ defined in } (3); \\ & \text{Set } (\forall \underline{n}) \ \left(\boldsymbol{v}_{\underline{n}}^{[0]}, \boldsymbol{h}_{\underline{n}}^{[0]} \right)^{\top} = \mathbf{J}^{-1} \left(\mathcal{S}_{\underline{n}}, \mathcal{T}_{\underline{n}} \right)^{\top}; \\ & \text{Set } b > 2 \text{ and } \tau_0 = 1; \\ & \text{Set } \alpha > 0 \text{ and } \lambda > 0; \\ & \text{Set } \gamma > 0 \text{ s. } \text{ t. } \gamma \max(1, \alpha) \|\mathbf{J}^{-1}\|\|\mathbf{D}\|^2 < 1; \end{split}$$

for $t \in \mathbb{N}$ do

Dual variable update:

$$\begin{pmatrix} \boldsymbol{u}^{[t+1]} \\ \boldsymbol{\ell}^{[t+1]} \end{pmatrix} = \operatorname{prox}_{\gamma(\lambda \parallel . \parallel_{2,1})^*} \begin{pmatrix} \bar{\boldsymbol{u}}^{[t]} + \gamma \mathbf{D} \boldsymbol{v}^{[t]} \\ \bar{\boldsymbol{\ell}}^{[t]} + \gamma \alpha \mathbf{D} \boldsymbol{h}^{[t]} \end{pmatrix}$$

FISTA parameter update

$$\overline{\tau_{t+1} = \frac{t+b}{b}} \\
\underline{Auxiliary variable update} \\
\overline{\bar{u}^{[t+1]} = u^{[t+1]} + \frac{\tau_{t}-1}{\tau_{t+1}} (u^{[t+1]} - u^{[t]})} \\
\overline{\ell}^{[t+1]} = \ell^{[t+1]} + \frac{\tau_{t}-1}{\tau_{t+1}} (\ell^{[t+1]} - \ell^{[t]})$$

Primal variable update

$$\begin{pmatrix} \boldsymbol{v}^{[t+1]} \\ \boldsymbol{h}^{[t+1]} \end{pmatrix} = \begin{pmatrix} \boldsymbol{v}^{[t]} \\ \boldsymbol{h}^{[t]} \end{pmatrix} - \mathbf{J}^{-1} \begin{pmatrix} \mathbf{D}^* (\boldsymbol{u}^{[t+1]} - \boldsymbol{u}^{[t]}) \\ \alpha \mathbf{D}^* (\boldsymbol{\ell}^{[t+1]} - \boldsymbol{\ell}^{[t]}) \end{pmatrix}$$
 26

	Cor	nfiguration I		Conf		
	T-ROF	T-joint	T-coupled	T-ROF	T-joint	$\operatorname{T-} coupled$
DFB DFB DD DFB TION TO TO TO TO TO TO TO TO TO TO TO TO TO	96 ± 48 1.7 ± 0.4 31.8 ± 17.0 1.5 ± 0.4	> 250 50.2 ± 21.0 > 250 31 4 ± 4 6	> 250 231 ± 37 > 250 125 ± 67	241 ± 18 3.7 ± 0.7 201 ± 69 45.2 ± 43	> 250 48.1 ± 3.4 > 250 40.5 ± 2.8	> 250 > 250 > 250 > 250 121 ± 42
Image: Image of the second system Image of the second system	1.09 ± 0.4 $1,090 \pm 520$ 16 ± 4 297 ± 150 15 ± 4	$\begin{array}{c} 31.4 \pm 4.0 \\ 4,840 \pm 15 \\ 1,030 \pm 410 \\ 4,180 \pm 69 \\ 619 \pm 96 \end{array}$	$ \begin{array}{r} 125 \pm 61 \\ 4,210 \pm 76 \\ 4,800 \pm 560 \\ 4,110 \pm 43 \\ 2,420 \pm 1,300 \\ \end{array} $	$2,010 \pm 73 \\ 30 \pm 5 \\ 1,580 \pm 490 \\ 349 \pm 330$	$\begin{array}{r} 40.5 \pm 2.8 \\ 4,810 \pm 215 \\ 989 \pm 64 \\ 4,150 \pm 18 \\ \textbf{785} \pm \textbf{59} \end{array}$	$ \begin{array}{r} 121 \pm 42 \\ 4,200 \pm 76 \\ 5,110 \pm 340 \\ 4,100 \pm 15 \\ 2,320 \pm 790 \\ \end{array} $

Table 2: Number of iterations and computational time necessary to reach Condition (26) for the different proximal algorithms investigated, illustrated on two configurations I ($\Delta H = 0.2$, $\Delta \Sigma^2 = 0.1$) and III ($\Delta H = 0.1$, $\Delta \Sigma^2 = 0.1$). **DFB**: Dual Forward-Backward, **FISTA**: inertial acceleration of DFB, **PD**: primal-dual, **AcPD**: strong-convexity based acceleration of PD.

Two-step versus one-step texture segmentation

 \Rightarrow Illustration of Interface detection on a piecewise fractal textured image that mimics a multiphasic flow.

Results on multiphase flow data

[Arbelaez et al. 2011]

[Yuan et al. 2015]

T-ROF

Results on multiphase flow data

 $^{*}(Q_{G}, Q_{L}) = (300, 300) \text{ mL/min}$

 $^{+}(Q_G, Q_L) = (1200, 300) \text{ mL/min}$

- Joint estimation and segmentation formulated as a strongly convex minimization problem. \rightarrow Fast algorithmic procedure. Application to large-scale problems.
- Chambolle-Pock using strong convexity faster than FISTA on the dual. \rightarrow Proximal step faster than gradient step based on numerical comparisons.
- Matlab toolbox including automatic tuning of the hyperparameters : GitHub (bpascal-fr/gsugar)

Prox versus grad

Non-smooth optimization: large-scale data

$$\widehat{\mathbf{u}} \in \operatorname*{Argmin}_{\mathbf{u} \in \mathcal{H}} f(\mathbf{u}) + g(\mathbf{u})$$
 (5)

- Activating f and g via proximal steps can be advantageous numerically [Combettes, Glaudin,2019]
- The choice of the most efficient algorithm for a specific data processing problem with the form of (5) is a complicated task.
- Convergence rate is an useful tool in order to provide a theoretical comparison among algorithms.
- The theoretical behaviour of an algorithmic scheme may differ considerably from its numerical efficiency, which enlightens the importance of obtaining sharp convergence rates exploiting the properties of *f* and *g*.

 $\widehat{\mathbf{u}} \in \operatorname{Argmin} f(\mathbf{u}) + g(\mathbf{u})$ $\mathbf{u} \in \mathcal{H}$

- Sharp linear convergence rates can be obtained for several splitting algorithms under strong convexity of *f* and/or *g*. [Giselsson, Boyd,2017][Davis, Yin,2017] [Taylor,Hendrickx,Glineur,2018] [Ryu, Hannah, Yin,2019] [Ryu, Taylor, Bergeling, Gilsesson,2019]
- Sub-linear convergence rates of some first order methods depending on the KL-exponent are obtained in when f + g is a KL-function. ([Attouch, Bolte, Svaiter,2013][Bolte, Daniilidis, Lewis,2006]. → KL-exponents are usually difficult to compute.

Gradient method Let $f \in \Gamma_0(\mathcal{H})$ and $f \in C^{1,1}_{\zeta}(\mathcal{H})$ (i.e. Gâteaux differentiable + ζ -Lipschitz continuous). We set, for some $\tau > 0$,

$$\Phi := \mathrm{Id} - \tau \nabla f$$

Proximal Point Algorithm (PPA) Let $f \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$, $\Phi := \operatorname{prox}_{\tau f} = (\operatorname{Id} + \tau \partial f)^{-1}$.

Forward-backward splitting Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. Additionally, $f \in C_{\zeta}^{1,1}(\mathcal{H})$ (i.e. Gâteaux differentiable + ζ -Lipschitz continuous). We set, for some $\tau > 0$,

$$\Phi := \operatorname{prox}_{\tau g} (\operatorname{Id} - \tau \nabla f) = (\operatorname{Id} + \tau \partial g)^{-1} (\operatorname{Id} - \tau \nabla f)$$
₃₄

Peaceman-Rachford splitting Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$,

$$\Phi := (2 \operatorname{prox}_{\tau g} - \operatorname{Id}) \circ (2 \operatorname{prox}_{\tau f} - \operatorname{Id})$$

Douglas-Rachford splitting Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. We set, for some $\tau > 0$,

$$\Phi := \operatorname{prox}_{\tau g} \circ (2 \operatorname{prox}_{\tau f} - \operatorname{Id}) + \operatorname{Id} - \operatorname{prox}_{\tau f}$$

Let $f \in C_{1/\alpha}^{1,1}(\mathcal{H})$ and $g \in C_{1/\beta}^{1,1}(\mathcal{H})$, for some $\alpha > 0$ and $\beta > 0$. The problem is to $\underset{x \in \mathcal{H}}{\operatorname{minimize}} \quad f(x) + g(x),$ under the assumption that solutions exist.

Example: Smooth TV denoising

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad \frac{1}{2} \|x - z\|_2^2 + \chi h_\mu(Lx),$$

- $L \in \mathbb{R}^{N-1 \times N}$ denotes the first order discrete difference operator $(\forall n \in \{1, \dots, N-1\})$ $(Lx)_n = \frac{1}{2}(x_n - x_{n-1})$
- h_{μ} : Huber loss, the smooth approximation of the ℓ_1 -norm parametrized by $\mu > 0$. $h_{\mu} \in C_{1/\mu}^{1,1}(\mathbb{R}^{N-1})$. Closed form expression of $\operatorname{prox}_{h_{\mu}}$.

1. Gradient descent Suppose that $\tau \in]0, 2\beta\alpha/(\beta + \alpha)[$. Then, Id $-\tau(\nabla g + \nabla f)$ is $r_G(\tau)$ -Lipschitz continuous, where

$$r_{G}(\tau) := \max\left\{|1 - \tau\rho|, |1 - \tau(\beta^{-1} + \alpha^{-1})|\right\} \in \left]0, 1\right[.$$
(6)

In particular, the minimum in (1) is achieved at

$$\tau^* = \frac{2}{\rho + \alpha^{-1} + \beta^{-1}}$$

and

$$r_G(\tau^*) = \frac{\alpha^{-1} + \beta^{-1} - \rho}{\alpha^{-1} + \beta^{-1} + \rho}$$

37

1. FBS Suppose that $\tau \in]0, 2\alpha[$. Then $\operatorname{prox}_{\tau g}(\operatorname{Id} - \tau \nabla f)$ is $r_{\tau_1}(\tau)$ -Lipschitz continuous, where

$$r_{\mathcal{T}_1}(\tau) := \max\left\{|1 - \tau\rho|, |1 - \tau\alpha^{-1}|\right\} \in \left]0, 1\right[.$$
(6)

In particular, the minimum in (1) is achieved at

$$\tau^* = \frac{2}{\rho + \alpha^{-1}}$$
 and $r_{T_1}(\tau^*) = \frac{\alpha^{-1} - \rho}{\alpha^{-1} + \rho}.$

1. FBS Suppose that $\tau \in]0, 2\beta]$. Then $\operatorname{prox}_{\tau f}(\operatorname{Id} - \tau \nabla g)$ is $r_{T_2}(\tau)$ -Lipschitz continuous, where $r_{T_2}(\tau) := \frac{1}{1 + \tau \rho} \in]0, 1[$.In particular, the minimum in (1) is achieved at

$$au^*=2eta$$
 and $r_{\mathcal{T}_2}(au^*)=rac{1}{1+2eta
ho}.$

1. PRS $(2\text{prox}_{\tau g} - \text{Id}) \circ (2\text{prox}_{\tau f} - \text{Id})$ and $(2\text{prox}_{\tau f} - \text{Id}) \circ (2\text{prox}_{\tau g} - \text{Id})$ are $r_R(\tau)$ -Lipschitz continuous, where

$$r_{R}(\tau) = \max\left\{\frac{1-\tau\rho}{1+\tau\rho}, \frac{\tau\alpha^{-1}-1}{\tau\alpha^{-1}+1}\right\} \in \left]0,1\right[.$$
 (6)

In particular, the minimum in (1) is achieved at

$$au^* = \sqrt{rac{lpha}{
ho}} \quad ext{ and } \quad extsf{r}_{ extsf{R}}(au^*) = rac{1-\sqrt{lpha
ho}}{1+\sqrt{lpha
ho}}.$$

1. DRS $S_{\tau \nabla g, \tau \nabla f}$ and $S_{\tau \nabla f, \tau \nabla g}$ are $r_S(\tau)$ -Lipschitz continuous, where

$$r_{\mathcal{S}}(\tau) = \min\left\{\frac{1 + r_{\mathcal{R}}(\tau)}{2}, \frac{\beta + \tau^2 \rho}{\beta + \tau \beta \rho + \tau^2 \rho}\right\} \in \left]0, 1\right[$$
(6)

and r_R is defined in p.16. In particular, the optimal step-size and the minimum in (1) are

$$(au^*, r_{\mathcal{S}}(au^*)) = egin{cases} \left(\sqrt{rac{lpha}{
ho}}, rac{1}{1+\sqrt{lpha
ho}}
ight), & ext{if } eta \leq 4lpha; \ \left(\sqrt{rac{eta}{
ho}}, rac{2}{2+\sqrt{eta
ho}}
ight), & ext{otherwise.} \end{cases}$$

Theoretical comparisons

Comparison of the convergence rates of EA, FBS, PRS, DRS for two choices of α , β , and ρ . Note that optimization rates are better than cocoercive rates in general.

Example: Smooth TV denoising

- First formulation: minimize $\underbrace{\frac{1}{2} \|x z\|_2^2}_{f(x)} + \underbrace{\chi h(Lx)}_{g(x)}$ $\rightarrow f \text{ is } \rho = 1 \text{ strongly convex}, \ \alpha = 1, \text{ and } \beta = \frac{\mu}{\chi \|L\|^2}.$
- 1- **EA:** Use $G_{\tau(\nabla g + \nabla f)}$ 2- **FBS:** Use $T_{\tau \nabla f, \tau \nabla g}$
- Second formulation: $\min_{x \in \mathcal{H}} \underbrace{\frac{1}{2} \|x z\|_{2}^{2} + \chi h_{\mathbb{I}_{1}}(L_{\mathbb{I}_{1}}x)}_{\tilde{f}(x)} + \underbrace{\chi h_{\mathbb{I}_{2}}(L_{\mathbb{I}_{2}}x)}_{\tilde{g}(x)}$ $\rightarrow \tilde{f} \text{ is } \rho = 1 \text{ strongly convex, } \alpha = \frac{\mu}{\mu + \chi \|L_{\mathbb{I}_{2}}\|^{2}}, \text{ and } \beta = \frac{\mu}{\chi \|L_{\mathbb{I}_{1}}\|^{2}}.$
- 3- **FBS 2:** Use $T_{\tau\nabla\tilde{g},\tau\nabla\tilde{f}}$ 4- **FBS 3:** Use $T_{\tau\nabla\tilde{f},\tau\nabla\tilde{g}}$ 5- **PRS:** Use $R_{\tau\nabla\tilde{f},\tau\nabla\tilde{g}}$ 6- **DRS:** Use $S_{\tau\nabla\tilde{f},\tau\nabla\tilde{g}}$

39

Numerical and theoretical comparisons

Piecewise constant denoising estimates after 10, 100, and 10000 iterations with $\chi =$ 0.7 and $\mu = 0.002$ when considering gradient descent, FBS, PRS or DRS. Associated theoretical and numerical convergence rates.

Numerical and theoretical comparisons

Piecewise constant denoising estimates after 10, 100, and 10000 iterations with $\chi =$ 0.7 and $\mu = 0.0001$ when considering gradient descent, FBS, PRS or DRS. Associated theoretical and numerical convergence rates.

- Douglas-Rachford and Peaceman-Rachford better theoretical and numerical rates for piecewise constant denoising.
- Convergence rate should involve strong convexity constant but also regularization parameter and Lipschitz constant in order to integrate the different parameters having impact on signal and image processing.

- Signal and image processing problems with strongly convex objective functions exist. Possibility to change the constant of strong convexity when considering texture segmentation.
- Many situations where prox does not have a closed form expression:
 - Even for $||Ax z||_2^2$ if $(A^*A + I)$ not easily invertible. In practice $A = A_1 A_2 \dots A_K$.
 - For data-term such as DKL or $\ell_1\text{-norm}$
- Are the conclusions stays the same for non-strongly convex problems ?

Example: Inverse problems

 \rightarrow extracted from L. Denneulin, M. Langlois, E. Thiebaut, and N. Pustelnik RHAPSODIE: Reconstruction of High-contrAst Polarized SOurces and Deconvolution for clrcumstellar Environments, accepted to A&A, 2021.

References

- B. Pascal, N. Pustelnik, and P. Abry, Strongly Convex Optimization for Joint Fractal Feature Estimation and Texture Segmentation, Applied and Computational Harmonic Analysis, vol. 54, pp 303-322, 2021
- L. M. Briceño-Arias and N. Pustelnik, Proximal or gradient steps for cocoercive operators, submitted, 2020.
- P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas, E. Guichard, P. Borgnat, N. Garnier, B. Audit, Spatial and temporal regularization to estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via convex optimization, PLoS One, 15(8), Aug. 2020.
- L. Denneulin, M. Langlois, E. Thiebaut, and N. Pustelnik, RHAPSODIE : Reconstruction of High-contrAst Polarized SOurces and Deconvolution for clrcumstellar Environments, accepted to A&A, 2021.
- J. Colas, N. Pustelnik, C. Oliver, P. Abry, J.-C. Geminard, V. Vidal, Nonlinear denoising for solid friction dynamics characterization, Physical Review E, 100, 032803, Sept. 2019.
- N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, J.-C. Pesquet, Wavelet-based Image Deconvolution and Reconstruction, Wiley Encyclopedia of Electrical and Electronics Engineering, DOI: 10.1002/047134608X.W8294, Feb. 2016.