Some aspects of MFG

Pierre Cardaliaguet

Ceremade - Paris Dauphine University

joint work with P.E. Souganidis (Chicago)

Séminaire Français d'Optimisation "Paris"

Pierre Cardaliaguet

Some aspects of MFG

October 2021 1/22

Mean Field Games (MFG) study collective behavior of rational agents.

- collective behavior = infinitely many agents, having individually a negligible influence on the global system
- rational agents = each agent controls his state in order to minimize a cost which depends on the other agents' positions

Some references:

- Early work by Lasry-Lions (2006) and Caines-Huang-Malhamé (2006)
- Similar models in the economic literature: heterogeneous agent models (Aiyagari ('94), Krusell-Smith ('98),...)
- Recent monographs by Carmona-Delarue ('18) and Achdou-C.-Delarue-Porretta-Santambrogio ('20)

2 MFG with common noise

• • • • • • • • • • • •

• • • • • • • • • • • •

2 MFG with common noise

• Dynamics: $dX_t^i = \alpha_t^i dt + dB_t^i + \beta dW_t$, (where the B^i and W are i.i.d. B.M., α^i is the control of Player *i*, and X_0^i are i.i.d. of law \bar{m}_0)

• Goal of the players: **to minimize** over α^i the cost

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\left[\int_{0}^{T} L(X_{t}^{i},\alpha_{t}^{i},m_{\mathbf{X}_{t}}^{N,i})dt + G(X_{T}^{i},m_{\mathbf{X}_{T}}^{N,i})\right],$$

where
$$m_{\mathbf{x}}^{N,i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$$
 if $\mathbf{x} = (x_1, ..., x_N)$.

 Nash equilibrium: (ā¹,...,ā^N) s.t., for any i ∈ {1,...,N}, āⁱ minimizes αⁱ → Jⁱ(αⁱ, (āⁱ)_{j≠i}).

A D N A P N A D N A D

• Dynamics: $dX_t^i = \alpha_t^i dt + dB_t^i + \beta dW_t$, (where the B^i and W are i.i.d. B.M., α^i is the control of Player *i*, and X_0^i are i.i.d. of law \bar{m}_0)

• Goal of the players: **to minimize** over α^i the cost

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\left[\int_{0}^{T} L(X_{t}^{i},\alpha_{t}^{i},m_{\mathbf{X}_{t}}^{N,i})dt + G(X_{T}^{i},m_{\mathbf{X}_{T}}^{N,i})\right],$$

where
$$m_{\mathbf{x}}^{N,i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$$
 if $\mathbf{x} = (x_1, ..., x_N)$.

• Nash equilibrium: $(\bar{\alpha}^1, \ldots, \bar{\alpha}^N)$ s.t., for any $i \in \{1, \ldots, N\}$, $\bar{\alpha}^i$ minimizes $\alpha^i \to J^i(\alpha^i, (\bar{\alpha}^j)_{j \neq i})$.

(日)

- Dynamics: $dX_t^i = \alpha_t^i dt + dB_t^i + \beta dW_t$, (where the B^i and W are i.i.d. B.M., α^i is the control of Player *i*, and X_0^i are i.i.d. of law \bar{m}_0)
- Goal of the players: to minimize over α^i the cost

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\left[\int_{0}^{T} L(X_{t}^{i},\alpha_{t}^{i},m_{\mathbf{X}_{t}}^{N,i})dt + G(X_{T}^{i},m_{\mathbf{X}_{T}}^{N,i})\right],$$

where
$$m_{\mathbf{x}}^{N,i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$$
 if $\mathbf{x} = (x_1, ..., x_N)$.

• Nash equilibrium: $(\bar{\alpha}^1, \dots, \bar{\alpha}^N)$ s.t., for any $i \in \{1, \dots, N\}$, $\bar{\alpha}^i$ minimizes $\alpha^i \to J^i(\alpha^i, (\bar{\alpha}^j)_{j \neq i})$.

• • • • • • • • • • • • • • •

- Dynamics: $dX_t^i = \alpha_t^i dt + dB_t^i + \beta dW_t$, (where the B^i and W are i.i.d. B.M., α^i is the control of Player *i*, and X_0^i are i.i.d. of law \bar{m}_0)
- Goal of the players: to minimize over α^i the cost

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\left[\int_{0}^{T} L(X_{t}^{i},\alpha_{t}^{i},m_{\mathbf{X}_{t}}^{N,i})dt + G(X_{T}^{i},m_{\mathbf{X}_{T}}^{N,i})\right],$$

where
$$m_{\mathbf{x}}^{N,i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$$
 if $\mathbf{x} = (x_1, ..., x_N)$.

• Nash equilibrium: $(\bar{\alpha}^1, \ldots, \bar{\alpha}^N)$ s.t., for any $i \in \{1, \ldots, N\}$, $\bar{\alpha}^i$ minimizes $\alpha^i \to J^i(\alpha^i, (\bar{\alpha}^j)_{j \neq i})$.

The formal mean field limit game $(N \rightarrow +\infty)$: limit of dynamics

Assume that in the N-player game each player plays a control of the form

$$dX_t^i = \bar{\alpha}_t(X_t^i, m_{\mathbf{X}_t}^N) dt + dB_t^i + \beta dW_t, \quad \text{with } X_0^i \text{ i.i.d. of law } \bar{m}_0.$$

• (Without common noise ($\beta = 0$)). Then $(m_{X_t}^N)$ converges in law to a flow of measures (m_t) given by $m_t = \mathcal{L}(X_t)$ where (X_t) solves

$$dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t))dt + dB_t, \qquad X_0 \sim \bar{m}_0.$$

• (With common noise $(\beta \neq 0)$). Then $(m_{X_t}^N)$ converges in law to a flow of random measures (m_t) given by $m_t = \mathcal{L}(X_t \mid W)$ where (X_t) solves

 $dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t \mid W))dt + dB_t + \beta dW_t, \qquad X_0 \sim \bar{m}_0.$

<ロト <回 > < 回 > < 回 > < 回 > … 回

The formal mean field limit game $(N \rightarrow +\infty)$: limit of dynamics

Assume that in the N-player game each player plays a control of the form

$$dX_t^i = \bar{\alpha}_t(X_t^i, m_{\mathbf{X}_t}^N) dt + dB_t^i + \beta dW_t, \quad \text{with } X_0^i \text{ i.i.d. of law } \bar{m}_0.$$

(Without common noise (β = 0)). Then (m^N_{Xt}) converges in law to a flow of measures (m_t) given by m_t = L(X_t) where (X_t) solves

$$dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t))dt + dB_t, \qquad X_0 \sim \bar{m}_0.$$

• (With common noise $(\beta \neq 0)$). Then $(m_{X_t}^{N})$ converges in law to a flow of random measures (m_t) given by $m_t = \mathcal{L}(X_t \mid W)$ where (X_t) solves

 $dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t \mid W))dt + dB_t + \beta dW_t, \qquad X_0 \sim \bar{m}_0.$

イロト 不得 トイヨト イヨト 二日

The formal mean field limit game ($N \rightarrow +\infty$): limit of dynamics

Assume that in the N-player game each player plays a control of the form

$$dX_t^i = \bar{\alpha}_t(X_t^i, m_{\mathbf{X}_t}^N) dt + dB_t^i + \beta dW_t, \quad \text{with } X_0^i \text{ i.i.d. of law } \bar{m}_0.$$

(Without common noise (β = 0)). Then (m^N_{Xt}) converges in law to a flow of measures (m_t) given by m_t = L(X_t) where (X_t) solves

$$dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t))dt + dB_t, \qquad X_0 \sim \bar{m}_0.$$

• (With common noise $(\beta \neq 0)$). Then $(m_{X_t}^N)$ converges in law to a flow of random measures (m_t) given by $m_t = \mathcal{L}(X_t \mid W)$ where (X_t) solves

$$dX_t = \bar{\alpha}_t(X_t, \mathcal{L}(X_t \mid W))dt + dB_t + \beta dW_t, \qquad X_0 \sim \bar{m}_0.$$

• Dynamics of a representative player: $dX_t = \alpha_t dt + dB_t + \beta dW_t$.

• Goal of the small player: Given (m_t) , to minimize over α the cost

$$J(\alpha;(m_t)) = \mathbb{E}\left[\int_0^T L(X_t, \alpha_t(X_t), m_t)dt + G(X_T, m_T)\right],$$

• Nash equilibrium: $\bar{\alpha}$ minimum of $\alpha \rightarrow J(\alpha; (\bar{m}_t))$ where

 $\overline{m}_t = \mathcal{L}(\overline{X}_t \mid W), \qquad d\overline{X}_t = \overline{\alpha}_t(\overline{X}_t)dt + dB_t + \beta dW_t, \ \mathcal{L}(\overline{X}_0) = \overline{m}_0.$

Pierre Cardaliaguet

• Dynamics of a representative player: $dX_t = \alpha_t dt + dB_t + \beta dW_t$.

• Goal of the small player: Given (m_t) , to minimize over α the cost

$$J(\alpha; (m_t)) = \mathbb{E}\left[\int_0^T L(X_t, \alpha_t(X_t), m_t) dt + G(X_T, m_T)\right],$$

• Nash equilibrium: $\bar{\alpha}$ minimum of $\alpha \rightarrow J(\alpha; (\bar{m}_t))$ where

 $\bar{m}_t = \mathcal{L}(\bar{X}_t \mid W), \qquad d\bar{X}_t = \bar{\alpha}_t(\bar{X}_t)dt + dB_t + \beta dW_t, \ \mathcal{L}(\bar{X}_0) = \bar{m}_0.$

Pierre Cardaliaguet

イロト イポト イヨト イヨト 一日

- Dynamics of a representative player: $dX_t = \alpha_t dt + dB_t + \beta dW_t$.
- Goal of the small player: Given (m_t) , to minimize over α the cost

$$J(\alpha;(m_t)) = \mathbb{E}\left[\int_0^T L(X_t,\alpha_t(X_t),m_t)dt + G(X_T,m_T)\right],$$

• Nash equilibrium: $\bar{\alpha}$ minimum of $\alpha \rightarrow J(\alpha; (\bar{m}_t))$ where

 $\bar{m}_t = \mathcal{L}(\bar{X}_t \mid W), \qquad d\bar{X}_t = \bar{\alpha}_t(\bar{X}_t)dt + dB_t + \beta dW_t, \ \mathcal{L}(\bar{X}_0) = \bar{m}_0.$

Pierre Cardaliaguet

イロト 不得 トイヨト イヨト 二日

- Dynamics of a representative player: $dX_t = \alpha_t dt + dB_t + \beta dW_t$.
- Goal of the small player: Given (m_t) , to minimize over α the cost

$$J(\alpha;(m_t)) = \mathbb{E}\left[\int_0^T L(X_t,\alpha_t(X_t),m_t)dt + G(X_T,m_T)\right],$$

• Nash equilibrium: $\bar{\alpha}$ minimum of $\alpha \rightarrow J(\alpha; (\bar{m}_t))$ where

$$\bar{m}_t = \mathcal{L}(\bar{X}_t \mid W), \qquad d\bar{X}_t = \bar{\alpha}_t(\bar{X}_t)dt + dB_t + \beta dW_t, \ \mathcal{L}(\bar{X}_0) = \bar{m}_0.$$

Let us introduce the value function of a typical player (given (m_t)):

$$u(t_0, x_0) = \inf_{\alpha} \mathbb{E}\left[\int_{t_0}^T L(X_t, \alpha_t(X_t), m_t) dt + G(X_T, m_T)\right],$$

where $dX_t = \alpha_t dt + dB_t$, $X_{t_0} = x_0$,

Then u solves the Hamilton-Jacobi equation

$$-\partial_t u - \frac{1}{2}\Delta u + H(x, Du, m_t) = 0, \qquad u(T, x) = G(X_T, m_T),$$

where $H(x, p, m) = \sup_{a}(-L(x, a, m) - p \cdot a)$

- And the optimal control is given by $\alpha_t^*(x) = -D_p H(x, Du, m_t)$.
- At the Nash equilibrium, $m_t = \mathcal{L}(X_t^*)$ where $dX_t = \alpha_t^*(X_t^*)dt + dB_t$, $X_0^* \sim \bar{m}_0$ solves the Fokker-Planck equation

$$\partial_t m - \frac{1}{2}\Delta m + \operatorname{div}(\alpha^* m) = 0, \ m_0 = \bar{m}_0$$

Pierre Cardaliaguet

Let us introduce the value function of a typical player (given (m_t)):

$$u(t_0, x_0) = \inf_{\alpha} \mathbb{E}\left[\int_{t_0}^T L(X_t, \alpha_t(X_t), m_t) dt + G(X_T, m_T)\right],$$

where $dX_t = \alpha_t dt + dB_t$, $X_{t_0} = x_0$,

• Then *u* solves the Hamilton-Jacobi equation

$$-\partial_t u - \frac{1}{2}\Delta u + H(x, Du, m_t) = 0, \qquad u(T, x) = G(X_T, m_T),$$

where $H(x, p, m) = \sup_{a}(-L(x, a, m) - p \cdot a)$

- And the optimal control is given by $\alpha_t^*(x) = -D_p H(x, Du, m_t)$.
- At the Nash equilibrium, $m_t = \mathcal{L}(X_t^*)$ where $dX_t = \alpha_t^*(X_t^*)dt + dB_t$, $X_0^* \sim \bar{m}_0$ solves the Fokker-Planck equation

$$\partial_t m - \frac{1}{2}\Delta m + \operatorname{div}(\alpha^* m) = 0, \ m_0 = \bar{m}_0$$

Let us introduce the value function of a typical player (given (m_t)):

$$u(t_0, x_0) = \inf_{\alpha} \mathbb{E}\left[\int_{t_0}^T L(X_t, \alpha_t(X_t), m_t) dt + G(X_T, m_T)\right],$$

where $dX_t = \alpha_t dt + dB_t$, $X_{t_0} = x_0$,

• Then *u* solves the Hamilton-Jacobi equation

$$-\partial_t u - \frac{1}{2}\Delta u + H(x, Du, m_t) = 0, \qquad u(T, x) = G(X_T, m_T),$$

where $H(x, p, m) = \sup_{a}(-L(x, a, m) - p \cdot a)$

- And the optimal control is given by $\alpha_t^*(x) = -D_{\rho}H(x, Du, m_t)$.
- At the Nash equilibrium, $m_t = \mathcal{L}(X_t^*)$ where $dX_t = \alpha_t^*(X_t^*)dt + dB_t$, $X_0^* \sim \bar{m}_0$ solves the Fokker-Planck equation

$$\partial_t m - \frac{1}{2}\Delta m + \operatorname{div}(\alpha^* m) = 0, \ m_0 = \bar{m}_0$$

Pierre Cardaliaguet

For the MFG equilibrium system:

$$(MFG) \begin{cases} (i) & -\partial_t u - \Delta u + H(x, Du, m(t)) = 0 & \text{in } [0, T] \times \mathbb{R}^d \\ (ii) & \partial_t m - \Delta m - \operatorname{div}(mD_\rho H(x, Du, m)) = 0 & \text{in } [0, T] \times \mathbb{R}^d \\ (iii) & m(0, \cdot) = \bar{m}_0, \ u(T, x) = g(x, m(T)) & \text{in } \mathbb{R}^d \end{cases}$$

• Existence of solutions: holds under general conditions (Lasry-Lions)

- Uniqueness cannot be expected in general, but holds
 - ▶ for small couplings or in a short time horizon (Huang-Caines-Malhamé, Lasry-Lions)
 - under a monotonicity conditions (Lasry-Lions): if H = H(x, p) f(x, m) and

$$\int_{\mathbb{R}^d} (f(x,m) - f(x,m')) d(m-m') \ge 0, \ \int_{\mathbb{R}^d} (g(x,m) - g(x,m')) d(m-m') \ge 0.$$

Link with the N-player game

- from the MFG system to the N-player differential games Many contributions (Huang-Caines-Malhamé, Carmona-Delarue, ...)
- ▶ from Nash equilibria of *N*-player differential games to the MFG system.
 - ★ Open loop NE (Fischer, Lacker,...),
 - ★ Closed loop NE (C.-Delarue-Lasry-Lions, Lacker, Djete,..).

(日)

Other form of control problems

- Mean field control, MFG of control
- Optimal stopping (Bertucci,...)
- Exit-time problems (Mazanti-Santambrogio,...)
- MFG on networks (Camilli, Achdou-Dao-Ley-Tchou,...)
- ▶ ...

Variational formulation (Lasry-Lions, C.-Graber, Santambrogio et al.,...)

- Numerical aspects (Achdou-Capuzzo Dolcetta, Silva, Chassagneux-Crisan-Delarue, ...)
- Master equation, minor-major problems
- Learning (C.-Hadikhanloo, Elie and al., ...)

2

Our aim is to discuss Mean Field Game (MFG) systems with a common noise but no idiosyncratic noise (with unknown $(\bar{u}, \bar{v}, \bar{m})$):

$$\begin{aligned} \mathcal{L} & d\bar{u}_t = \{-\beta \Delta \bar{u}_t + \mathcal{H}(D\bar{u}_t, x) - \mathcal{F}(x, \bar{m}_t) - \sqrt{2\beta} \operatorname{div}(\bar{v}_t)) dt + \bar{v}_t \cdot \sqrt{2\beta} dW_t & \text{ in } \mathbb{R}^d \times (0, T) \\ & d\bar{m}_t = \{\beta \Delta \bar{m}_t + \operatorname{div}(\bar{m}_t D_p \mathcal{H}(D\bar{u}_t, x))\} dt - \operatorname{div}(\bar{m}_t \sqrt{2\beta} dW_t) & \text{ in } \mathbb{R}^d \times (0, T) \\ & \ddots \quad \bar{m}_{t=0} = \bar{m}_0, \qquad \bar{u}_T(x) = G(x, \bar{m}_T) & \text{ in } \mathbb{R}^d. \end{aligned}$$

- **Motivation:** Heterogeneous agent models, which often contain common noise terms but are seldom uniformly elliptic.
- Difficulty: no regularity of the solution, despite the Laplacian!

A typical player controls her dynamics

$$dX_t^{\alpha} = \alpha_t dt + \sqrt{2\beta} dW_t$$
 in $[0, T]$ $X_0^{\alpha} = Z$,

with α an admissible control, W is the common noise, Z is the initial distribution. (Rk: no idiosyncratic noise)

The cost of player a typical player is

$$J(\alpha) = \mathbb{E}\left[\int_0^T (L(\alpha_t, X_t^{\alpha}) + F(X_t^{\alpha}, m_t))dt + g(X_T^{\alpha}, m_T)\right],$$

- (m_t) is the conditional distribution of agents given the common noise W• $L : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is convex in the first variable,
- ▶ $F, G : \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ are continuous.

In a weak MFG equilibrium, α and m are adapted to a larger filtration and m
_t is the conditional law of X^α_t given W and an additional noise.

Pierre Cardaliague	et
--------------------	----

Introducing the value function (\bar{u}_t) of the problem, we see that the pair $(\bar{\alpha}, \bar{m})$ is a (strong) MFG equilibrium if

$$\bar{\alpha}_t = -D_{\rho}H(D\bar{u}_t(x), x),$$

where $(\bar{u}, \bar{v}, \bar{m})$ solves the stochastic MFG system

$$\begin{cases} d\bar{u}_t = \{-\beta \Delta \bar{u}_t + H(D\bar{u}_t, x) - F(x, \bar{m}_t) - 2\beta \operatorname{div}(\bar{v}_t)\} dt + \bar{v}_t \cdot \sqrt{2\beta} dW_t & \text{in } \mathbb{R}^d \times (0, T) \\\\ d\bar{m}_t = \{\beta \Delta \bar{m}_t + \operatorname{div}(\bar{m}_t D_\rho H(D\bar{u}_t, x))\} dt - \operatorname{div}(\bar{m}_t \sqrt{2\beta} dW_t) & \text{in } \mathbb{R}^d \times (0, T) \\\\ \bar{m}_{t=0} = \bar{m}_0, \quad \bar{u}_T(x) = G(x, \bar{m}_T) & \text{in } \mathbb{R}^d. \end{cases}$$

where $H(p, x) = \sup_{\alpha} -p \cdot \alpha - L(\alpha, x)$.

 The vector field v
 ensures the solution v
 of the backward HJ equation to be adapted. (Peng ('92))

4

イロト 不得 トイヨト イヨト 二日

Introducing the value function (\bar{u}_t) of the problem, we see that the pair $(\bar{\alpha}, \bar{m})$ is a (strong) MFG equilibrium if

$$\bar{\alpha}_t = -D_{\rho}H(D\bar{u}_t(x), x),$$

where $(\bar{u}, \bar{v}, \bar{m})$ solves the stochastic MFG system

$$\begin{cases} d\bar{u}_t = \{-\beta \Delta \bar{u}_t + H(D\bar{u}_t, x) - F(x, \bar{m}_t) - 2\beta \operatorname{div}(\bar{v}_t)\} dt + \bar{v}_t \cdot \sqrt{2\beta} dW_t & \text{in } \mathbb{R}^d \times (0, T) \\\\ d\bar{m}_t = \{\beta \Delta \bar{m}_t + \operatorname{div}(\bar{m}_t D_\rho H(D\bar{u}_t, x))\} dt - \operatorname{div}(\bar{m}_t \sqrt{2\beta} dW_t) & \text{in } \mathbb{R}^d \times (0, T) \\\\ \bar{m}_{t=0} = \bar{m}_0, \quad \bar{u}_T(x) = G(x, \bar{m}_T) & \text{in } \mathbb{R}^d. \end{cases}$$

where $H(p, x) = \sup_{\alpha} -p \cdot \alpha - L(\alpha, x)$.

 The vector field v
 ensures the solution u
 of the backward HJ equation to be adapted. (Peng ('92))

4

イロト 不得 トイヨト イヨト 二日

- Statement of the problem: Lasry & Lions ('05), Lions ('10), Bensoussan, Frehse & Yam ('13), Carmona & Delarue ('14).
- Existence of a solution by a probabilistic approach: Carmona, Delarue & Lacker ('16), ..., Lacker ('21)
 - \longrightarrow existence of a weak MFG equilibrium

 \longrightarrow existence and uniqueness of a strong MFG equilibrium (LL monotonicity condition+ uniqueness of optimal controls)

 \rightarrow weak MFG equilibria as limits of *N*-player games (with idiosyncratic noise).

- Existence of a solution by a PDE approach: C., Delarue, Lasry & Lions ('19), ..., Gangbo, Mészáros, Mou & Zhang ('21)

 - \longrightarrow classical solutions to the master equation (monotony+idiosyncratic noise or convexity)
- **Goal of the talk:** analysis of the stochastic MFG system without idiosyncratic noise. → main issue: no smooth solutions

A change of variables

Let $(\bar{u}, \bar{v}, \bar{m})$ be a solution of the stochastic MFG system:

$$\begin{cases} d\bar{u}_t = \{-\beta \Delta \bar{u}_t + H(D\bar{u}_t, x) - F(x, \bar{m}_t) - 2\beta \operatorname{div}(\bar{v}_t)\} dt + \bar{v}_t \cdot \sqrt{2\beta} dW_t & \text{in } \mathbb{R}^d \times (0, T) \\ d\bar{m}_t = \{\beta \Delta \bar{m}_t + \operatorname{div}(\bar{m}_t D_p H(D\bar{u}_t, x))\} dt - \operatorname{div}(\bar{m}_t \sqrt{2\beta} dW_t) & \text{in } \mathbb{R}^d \times (0, T) \\ \bar{m}_{t=0} = \bar{m}_0, \quad \bar{u}_T(x) = G(x, \bar{m}_T) & \text{in } \mathbb{R}^d. \end{cases}$$

Setting

$$\tilde{u}_t(x) = \bar{u}_t(x + \sqrt{2\beta}W_t, x)$$
 and $\tilde{m}_t = (id - \sqrt{2\beta}W_t) \sharp \bar{m}_t$

we obtain the new system (with unknown $(\tilde{u}, \tilde{M}, \tilde{m})$):

$$(\mathbf{s} - \mathbf{MFG}) \begin{cases} d_t \tilde{u}_t = \left\{ \tilde{H}_t(D\tilde{u}_t(x), x) - \tilde{F}_t(x, \tilde{m}_t) \right\} dt + d\tilde{M}_t \text{ in } \mathbb{R}^d \times (0, T), \\ \partial_t \tilde{m}_t = \operatorname{div}(\tilde{m}_t D_\rho \tilde{H}(D\tilde{u}_t(x), x)) dt \text{ in } \mathbb{R}^d \times (0, T), \\ \tilde{m}_0 = \bar{m}_0 \qquad \tilde{u}_T = \tilde{G}(\cdot, \tilde{m}_T) \text{ in } \mathbb{R}^d \end{cases}$$

where $(ilde{M}_t(x))_{t\in[0,T]}$ is an unknown martingale for a.e. $x\in\mathbb{R}^d$ and where

$$\begin{split} \tilde{H}_t(x,p) &= H_t(p, x + \sqrt{2\beta}W_t), \\ \tilde{F}_t(x,m) &= F(x + \sqrt{2\beta}W_t, (id + \sqrt{2\beta}W_t) \sharp m), \\ \tilde{G}(x,m) &= G(x + \sqrt{2\beta}W_T, (id + \sqrt{2\beta}W_T) \sharp m). \end{split}$$

Pierre Cardaliaguet

$$(\mathbf{s} - \mathbf{MFG}) \begin{cases} d_t \tilde{u}_t = \left\{ \tilde{H}_t(D\tilde{u}_t(x), x) - \tilde{F}_t(x, \tilde{m}_t) \right\} dt + d\tilde{M}_t \text{ in } \mathbb{R}^d \times (0, T), \\ \partial_t \tilde{m}_t = \operatorname{div}(\tilde{m}_t D_p \tilde{H}(D\tilde{u}_t(x), x)) dt \text{ in } \mathbb{R}^d \times (0, T), \\ \tilde{m}_0 = \bar{m}_0 \qquad \tilde{u}_T = \tilde{G}(\cdot, \tilde{m}_T) \text{ in } \mathbb{R}^d \end{cases}$$

- The first equation is a Hamilton-Jacobi equation with random coefficients
 Peng ('92): 2nd order backward HJ under a uniform ellipticity assumption,
 - . . .
 - Qiu ('18), Qiu and Wei ('19): viscosity solution involving derivatives on the path space.

 \longrightarrow Here one needs $D\tilde{u}$ for the second equation.

- The second equation is a continuity equation with a nonsmooth drift
 - Di Perna and Lions ('89), Ambrosio ('04), Bouchut, James and Mancini ('05)...

Main result

The triplet $(\tilde{u}, \tilde{m}, \tilde{M})$ is a solution of **(s-MFG)** if:

($\tilde{u}, \tilde{M}, \tilde{m}$) are adapted to W and ($\tilde{M}_t(x)$) is a continuous martingale for a.e. $x \in \mathbb{R}^d$, (regularity)

$$\|\tilde{m}\|_{\infty}+\|\tilde{u}_t\|_{W^{1,\infty}(\mathbb{R}^d)}+D^2\tilde{u}_t\ z\cdot z+\|\tilde{M}_t\|_{\infty}\leq C,$$

3 (Eq. for
$$\tilde{u}$$
) for a.e (x, t) and \mathbb{P} -a.s. in ω ,
 $\tilde{u}_t(x) = \tilde{G}(x, \tilde{m}_T) - \int_t^T (\tilde{H}_s(D\tilde{u}_s(x), x) - \tilde{F}_s(x, \tilde{m}_s)) ds - \tilde{M}_T(x) + \tilde{M}_t(x),$

4 (Eq. for \tilde{m}) in the sense of distributions and \mathbb{P} -a.s. in ω ,

$$d_t \tilde{m}_t = \operatorname{div}(\tilde{m}_t D_\rho \tilde{H}_t(D\tilde{u}_t, x)) \ \text{in} \ \mathbb{R}^d \times (0, T) \quad \tilde{m}_0 = \bar{m}_0 \ \text{in} \ \mathbb{R}^d.$$

Theorem (C.-Souganidis)

Under suitable assumptions (monotony of \tilde{F} and \tilde{G} and strict convexity of \tilde{H}), there exists a unique solution of **(s-MFG)**.

Pierre	Carda	liaguet
--------	-------	---------

< ロ > < 同 > < 回 > < 回 >

Comments and applications

The result relies on

- A new comparison result for HJ equation with random coefficients (Inspired by Douglis ('61))
- Discretization of the noise (cf. Carmona-Delarue-Lacker ('16)).
- Uniqueness of optimal solutions: if $\alpha_t^*(x) = -D_p \tilde{H}_t(D\tilde{u}_t(x), x)$, then the equation

$$dX_t = \alpha_t^*(X_t)dt + \sqrt{2\beta}dW_t, \qquad X_0 = x_0$$

has a unique solution for a.e. x_0

Application to games with a finitely many of players.

Pierre Cardaliaguet	Pier	e Ca	Irdal	iagi	uet
---------------------	------	------	-------	------	-----

The master equation

The master equation associated with our MFG with common noise is:

$$\begin{aligned} &\partial_t U(t, x, m) - \beta \Delta U(t, x, m) + H(D_x U(t, x, m), x) \\ &+ \int_{\mathbb{R}^d} D_m U(t, x, m, y) \cdot D_p H(D_x U(t, y, m), y) m(dy) \\ &- \beta \Big(\int_{\mathbb{R}^d} Tr(D_{ym}^2 U(t, x, m, y)) m(dy) + 2 \int_{\mathbb{R}^d} Tr(D_{xm}^2 U(t, x, m, y)) m(dy) \\ &+ \int_{\mathbb{R}^{2d}} Tr(D_{mm}^2 U(t, x, m, y, y')) m(dy) m(dy') \Big) = F(x, m) \text{ in } \mathbb{R}^d \times \mathcal{P}_2. \end{aligned}$$

Theorem (C.-Souganidis)

Under suitable assumptions (monotony of \tilde{F} and \tilde{G} and strict convexity of \tilde{H}), there exists a unique weak solution to the master equation.

By "weak solution" we mean:

- After lifting to the space of probability measures (Lions)
- Weak formulation inspired by Bertucci ('20, '21)

In this talk,

- we discussed the backward (first order) stochastic HJ,
- we discussed the stochastic MFG system with common noise and no idiosyncratic noise,
- we applied the results to differential games with a large number of players,
- we discussed the existence/uniqueness of a solution to the associated Master equation.

Open questions:

- stochastic MFG with degenerate idiosyncratic noise and common noise (in progress with B. Seeger and P. Souganidis),
- identification of the martingale part,
- mean field limit of the Nash system with finitely many players.

Thank you!

(日)

In this talk,

- we discussed the backward (first order) stochastic HJ,
- we discussed the stochastic MFG system with common noise and no idiosyncratic noise,
- we applied the results to differential games with a large number of players,
- we discussed the existence/uniqueness of a solution to the associated Master equation.

Open questions:

- stochastic MFG with degenerate idiosyncratic noise and common noise (in progress with B. Seeger and P. Souganidis),
- identification of the martingale part,
- mean field limit of the Nash system with finitely many players.

Thank you!

(日)