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Introduction

1 Description of the generalized conditional gradient (GCG)
algorithm (an extension of the Frank-Wolfe algorithm).

Linear convergence for adaptive stepsize rules (in a simple
setting).

2 For a simple class of potential games, the GCG algorithm is a
best-response procedure.

3 Heuristic derivation of the mean-field game (MFG) of
interest.

4 Application of the GCG method to MFGs, interpretation and
convergence results.
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3 Heuristic derivation of the mean field game system

4 Generalized condition gradient for mean-field games



GCG A potential game Heuristic derivation GCG for MFG

General setting

Consider the following problem:

inf
x∈Rn

f (x) := f1(x) + f2(x), subject to: x ∈ K . (P)

Assumptions:

K ⊆ Rn is convex

f1 : K → R and f2 : K → R are convex

f1 is lower semi-continuous

f2 has a Lipschitz-continuous gradient

K is non-empty and compact.

Let x̄ denote a solution to the problem.
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Subproblem

Given x ∈ Rn, we denote by flin[x ] : Rn → R the (partial)
linearization of f at x , defined by:

flin[x ](y) = f1(y) + f2(x) + 〈∇f2(x), y − x〉.

Since f2 is convex, flin[x ](y) ≤ f (y) for all x ∈ Rn.

We consider the linearized problem at x , defined by

inf
y∈Rn

flin[x ](y), subject to: y ∈ K . (Plin(x))

Assumption: Plin(x) is numerically easy to solve, for any
x ∈ K .

We call primal-dual gap the number σ(x) defined by

0 ≤ σ(x) = flin[x ](x)−
(

inf
y∈K

flin[x ](y)
)
.
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Optimality certificate

Lemma

Let x ∈ K . Then, x is σ(x)-optimal, that is to say,

f (x) ≤ f (x̄) + σ(x).

Proof. By definition, we have

−σ(x) = −flin[x ](x) + inf
y∈K

flin[x ](y) ≤ −f (x) + flin[x ](x̄).

Finally, we have flin[x ](x̄) ≤ f (x̄). Therefore,

−σ(x) ≤ −f (x) + f (x̄).

Remark. The condition σ(x) = 0 is also a necessary condition of
optimality.
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Algorithm

Algorithm 1: Generalized conditional gradient algorithm

Input: x̄0 ∈ K ;
for k = 0, 1, ... do

Find a solution xk to Plin(x̄k);
Choose a stepsize δk ∈ [0, 1];
Set x̄k+1 = (1− δk)x̄k + δkxk ;

end

Theorem

There exists a constant C > 0 such that the following holds true.

If δk =
1

k + 1
, then f (x̄k) ≤ f (x̄) +

C ln(k)

k
, ∀k > 1.

If δk =
2

k + 2
, then f (x̄k) ≤ f (x̄) +

C

k
, ∀k > 0.
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An adaptative stepsize rule

Theorem

Assume the following:

The set K is non-empty, convex, and closed.

The function f1 is l.s.c. and α-strongly convex over K .

The function f2 is convex with an L-Lipschitz gradient.

Consider the adaptative stepsize rule

δk = min
( σk
LD2

k

, 1
)
,

where σk = σ(x̄k) and Dk = ‖xk − x̄k‖.

Then there exists λ ∈ [0, 1) such that

f (x̄k)− f (x̄) ≤ λk
(
f (x̄0)− f (x̄)

)
, ∀k ∈ N.
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Motivation

Let k ∈ N. For δ ∈ [0, 1], we set xδ = (1− δ)x̄k + δxk . We have
the following upper bound:

f (xδ) = f1(xδ) + f2(xδ)

≤
[
(1− δ)f1(x̄k) + δf1(xk)

]
+
[
f2(x̄k) + δ〈∇f2(x̄k), xk − x̄k〉+

Lδ2

2
D2
k

]
.

Re-arraging:

f (xδ)− f (x̄k) ≤ h(δ) := −δσk +
Lδ2

2
D2
k .

The chosen stepsize δk = min
(
σk
LD2

k
, 1
)
, minimizes h over [0, 1].
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Proof

Proof of the theorem.

Step 1. A bound of Dk .

By construction xk minimizes flin[x̄k ](·) over K .

The point x̄k is σk -optimal for this minimization problem.

Moreover, flin[x̄k ](·) is α-strongly convex (since f1 is
α-strongly convex).

Therefore,

D2
k = ‖xk − x̄k‖2 ≤ 2σk

α
.

Remark. The strong convexity of f1 is only used at this step of the
proof.
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Proof

Step 2. A bound of h(δk).

Case 1: σk ≥ LD2
k . Then δk = 1 and

h(δk) = −σk +
L

2
D2
k ≤ −

1

2
σk .

Case 2: σk < LD2
k . Then δk = σk

LD2
k

and

h(δk) = −
σ2
k

2LD2
k

≤ −σkα
4L

.

Therefore, h(δk) ≤ −ωσk , where ω = min
(1

2
,
α

4L

)
> 0.
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Proof

Step 3. Conclusion.
We deduce that

f (x̄k+1)− f (x̄) = f (xδk )− f (x̄)

≤ (f (x̄k)− f (x̄)) + h(δk)

≤ (f (x̄k)− f (x̄))− ωσk
≤ (f (x̄k)− f (x̄))− ω(f (x̄k)− f (x̄))

= (1− ω)(f (x̄k)− f (x̄)).



GCG A potential game Heuristic derivation GCG for MFG

Variants

Some other adaptative stepsize rules can be considered.

Exact minimization:

δk ∈ argmin
δ∈[0,1]

f (xδ).

Armijo-Goldstein rule: given γ ∈ (0, 1) and η ∈ (0, 1),

δk ∈ argmax
{
δ
∣∣ f (xδ) ≤ f (x̄k)− ηδσk , δ = γj , j = 0, 1, ...

}
The result of the theorem remains true for these choices of rules.
They do not require the knowledge of L.
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Model

Let (Y ,Y, µ) be a probability space. We consider a
continuum of agents, characterized by a parameter y ∈ Y ,
with probability distribution µ.

The game involves two variables:

the decisions X ∈ L∞(Y ;Rd); X (y) is the decision of the
agents with parameter y

a price variable λ ∈ Rd , common to all agents.

Decision X (·)
of the agents

Optim. problem←−−−−−−−−−
−−−−−−−−−−→
Coupling function

Price λ
(common to all)

Non-atomic agents: they do not take into account their own
impact on λ in the optimization problem.
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Model

The decision variables X satisfy

X (y) ∈ argmin
x∈Xad

fλ,y (x) := `(x , y) + 〈λ, x〉, (Pλ,y )

where Xad ⊆ Rd and ` : Xad × Y → R.

The price λ ∈ Rd is deduced from X ∈ L∞(Y ,Rd) through

λ = ψ
(∫

Y
X (y) dµ(y)

)
,

where the price function ψ : Rd → Rd is given.

Interpretation: Cournot equilibrium,
∫
Y X (y) dµ(y) is a demand

of some product.
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Example

Theorem

Assume the following:

The set Xad is convex and closed.

The cost `(·, y) is α-strongly convex over Xad, for any y ∈ Y .

There exists C > 0 and x0 ∈ Xad such that for all x ∈ Xad and
for all y ∈ Y ,

`(x , y) ≥ 1

C
‖x‖2 − C and `(x0, y) ≤ C .

The function ψ is Lipschitz-continuous and bounded over Xad.

Then there exists a pair (X , λ) ∈ L∞(Y ;Rd)× Rd which is
solution to the game.
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Proof

Proof.

It is easy to verify that for all λ ∈ Rd , for all y ∈ Y , the
problem Pλ,y has a unique solution Xλ(y).

Moreover, Xλ(·) ∈ L∞(Y ;Rd) and the mapping

λ ∈ Rd 7→ Xλ ∈ L∞(Y ;Rd),

called best-response function, is Lipschitz-continuous.

The game boils down to the fixpoint relation

λ = θ(λ) := ψ
(∫

Y
Xλ(y) dµ(y)

)
.

Let C > 0 denote a bound of ‖ψ‖ over Xad. The mapping θ is
continuous from B̄Rd (C ) to B̄Rd (C ). Thus by the Schauder
fixpoint theorem, there exists λ such that λ = θ(λ).
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Potential formulation

Theorem

Consider the assumptions of the previous theorem. Assume
moreover that there exists a convex function φ : Rd → R such that

ψ = ∇φ.

Then there exists a unique solution (X̄ , λ̄) to the game. Moreover,
X̄ is the unique solution to the following potential problem:

min
X∈L∞(Y ;Xad)

F (X ) :=

∫
Y
`(X (y), y) dµ(y) + φ

(∫
Y
X (y) dµ(y)

)
.
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Proof

Let (X̄ , λ̄) be a solution. Then, for any X ∈ L∞(Y ;Xad),

F (X )− F (X̄ ) =

∫
Y

(
`(X (y), y)− `(X̄ (y), y)

)
dµ(x)

+φ
(∫

Y
X (y) dµ(y)

)
− φ

(∫
Y
X̄ (y) dµ(y)

)
≥
∫
Y

(
`(X (y), y)− `(X̄ (y), y)

)
dµ(x)

+
〈
∇φ
(∫

Y X̄ (y) dµ(y)
)︸ ︷︷ ︸

=λ̄

,

∫
Y
X (y) dµ(y)−

∫
Y
X̄ (y) dµ(y)

〉

=

∫
Y

[(
`(X (y), y) + 〈λ̄,X (y)〉

)
−
(
`(X̄ (y), y) + 〈λ̄, X̄ (y)〉

)]
dµ(y)

=

∫
Y

[
fλ̄,y (X (y))− fλ̄,y (X̄ (y))

]
dµ(y) ≥ 0.
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Proof

Conclusion.

It follows that X̄ minimizes F .

It is easy to verify that F is α-strongly convex (in L2
µ(Y ;Rd)),

thus F has a unique minimizer.

As a consequence, the solution to the game is unique.
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Application of GCG

The proof of the potential formulation reveals a suitable
decomposition F = F1 + F2 for the application of the generalized
conditional gradient method! We define

F1(X ) =

∫
Y
`(X (y), y) dµ(x) and F2(x) = φ

(∫
Y
X (y) dµ(y)

)
.

Let X̄k and X ∈ L∞(Y ;Rd). Let λk = ∇φ
( ∫

Y X̄k(y) dµ(y)
)
. We

have

Flin[X̄k ](X ) =

∫
Y

(
`(X (y), y) + 〈λk ,X (y)〉︸ ︷︷ ︸

fλk ,y (X (y))

)
dµ(y) + Constant.

The unique minimizer of Flin[X̄k ] is the best-response function
Xk = Xλk .
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Application of GCG

Algorithm 2: Fictitious play

Input: X̄0 ∈ L∞(Y ,Xad);
for k = 0, 1, ... do

[Prediction] Compute λk = ∇φ
( ∫

Y X̄k(y) dµ(y)
)
.

[Best-response] Compute Xk = Xλk (·).

[Learning] Set X̄k+1 = (1− δk)X̄k + δkXk ,
for some δk ∈ [0, 1].

end

The GCG algo. (with δk = 1
k+1 ) coincides with the fictitious play.

The contribution F1 of the potential cost is strongly convex in
L2
µ(Y ;Rd), thus linear convergence can be achieved.
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Exploitability

The primal-dual gap is given by

σ(X̄k) = Flin[X̄k ](X̄k)− Flin[X̄k ](Xλk )

=

∫
Y

[
fλk ,y (X̄k(y))− inf

x∈Xad

fλk ,y (x)
]

︸ ︷︷ ︸
Best possible improvement for agent y ,

assuming λk fixed

dµ(y) ≥ 0.

In the present context, σ(X̄k) is referred to as exploitability.
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N-player differential game

We begin with a differential game with N players.

Data:

N i.i.d. random variables (X̄ i
0)i=1,...,N in Rd , with probability

distribution m0 ∈ P(Rn)

N independent Brownian motions (W i
t )t∈[0,T ], i=1,...,N

a running cost L : Rd → R
a terminal cost g : Rd → R
a price function ψ : Rd → Rd .

Decision variables of the agent i :

a control Ai (an adapted stochastic process)

the associated state X i , solution to:

dX i
t = Ai

t dt +
√

2 dW i
t , X i

0 = X̄ i
0.
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N-player differential game

Equilibrium problem: find N + 1 stochastic processes (Ā1, ..., ĀN)
and λ such that

Āi ∈ argmin
Ai∈L2(0,T ;Rd )

J[λ](Ai )

where J[λ](Ai ) = E
[ ∫ T

0

(
L(Ai

t) + 〈λt ,Ai
t〉
)

dt + g(X i
T )
]

and

λt = ψ
( 1

N

N∑
j=1

Āj
t

)
.

Decision (Ā1, ..., ĀN)

of the agents

Stochastic control pb.←−−−−−−−−−−−−−
−−−−−−−−−−→
Coupling function

Price λ
(common to all)
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MFG

Mean-field game (MFG): a limit model for the above game, as N
goes to infinity. At the limit, we “expect”:

the price λ to be deterministic

the controls of the agents to have the same distribution and
to be independent.

The MFG can be posed as an equilibrium problem involving a
single pair (X̄ , Ā) (for a “representative agent”) and λ:

Ā ∈ argmin
A∈L2(0,T ;Rd )

J[λ](A)

where J[λ](A) = E
[ ∫ T

0

(
L(Xt ,At) + 〈λt ,At〉

)
dt + g(XT )

]
and

λt = ψ
(
E[Āt ]

)
.
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PDE formulation

In the PDE formulation of the problem, the optimal control is
characterized via a feedback function v which is such that
Āt = v(X̄t , t), almost surely.

Feedback v
of the

representative agent

Stochastic control pb.←−−−−−−−−−−−−−
−−−−−−−−−−→
Coupling function

Price λ
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PDE formulation

Our MFG model involves two additional variables:

The feedback v is deduced from λ via the value function u.

The price λ is deduced from v via the distribution m.

Feedback

v

Feedback←−−−−−−−−
(ii)

Fokker-Planck−−−−−−−−−→
(iii)

Value
function u

Distribution
m

HJB←−−−−−−
(i)

Coupling−−−−−−→
(iv)

Price

λ

Remark. Our model is a mean field game of controls, since λ
depends on m and v .
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PDE formulation

From λ to v .

The value function u is the solution to the
Hamilton-Jacobi-Bellman (HJB) equation:{

−∂tu −∇u + H(∇u + λ) = 0

u(T , x) = g(x),
(i)

where H(p) = supα
(
− 〈p, α〉 − L(α)

)
.

Notation: u = HJB(λ).

The optimal feedback is given by

v(t, x) = −∇H(∇u(t, x) + λ(t)). (ii)
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PDE formulation

From v to λ.

Let m denote the probability distribution of X (when v is
used). Then m is the solution to the Fokker-Planck
equation: {

∂tm −∆m + div(mv) = 0,

m(0, x) = m0(x).
(iii)

Notation: m = FP(v).

Finally, λ can be described by

λ(t) = ψ
(∫

v(t, x)m(t, x) dx
)
. (iv)

MFG: the coupled system (i)-(iv) with unknown (m, v , u,P).
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Assumptions

Periodicity:

g(x + y) = g(x) for all y ∈ Zd , so that the PDEs of the MFG
can be considered on Q := Td × [0,T ] with periodic boundary
conditions.

Monotonicity assumptions:

ψ = ∇φ, where φ is convex

L is strongly convex.

Regularity assumptions:

L(v) ≤ C (1 + ‖v‖2)

H ∈ C 2(Rd), H, ∇H, ∇2H are locally Hölder continuous

ψ is Lipschitz continuous and bounded

m0 ∈ C 3(Td), m0 ≥ 0,
∫
Td m0(x) dx = 1, g ∈ C 3(Td).
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Main result

Theorem

There exists a unique classical solution (m̄, v̄ , ū, P̄) to the MFG
system (i)-(ii)-(iii)-(iv), with

ū ∈ C 2+β,1+β/2(Q), m̄ ∈ C 2+β,1+β/2(Q),
v̄ ∈ Cβ(Q),Dxv ∈ Cβ(Q), P̄ ∈ Cβ(0,T ),

for some β ∈ (0, 1).

Notation:

C 2+β,1+β(Q) :=
{
u ∈ Cβ(Q) | ∂tu ∈ Cβ(Q),

∇u ∈ Cβ(Q), ∇2u ∈ Cβ(Q)
}
.
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Potential formulation

Consider the cost function J : W 2,1,p(Q)× L∞(Q)→ R,

J (m, v) =

∫∫
Q
L(v(x , t))m(x , t) dx dt

+

∫ T

0
φ
(∫

Td v(x , t)m(x , t) dx
)

dt.

Lemma (Potential formulation)

Let (ū, m̄, v̄ , P̄) be the solution to (MFG ). Then, (m̄, v̄) is a
solution to:

min
m∈W 2,1,p(Q)
v∈L∞(Q,Rk )

J (m, v) s.t.:

{
∂tm −∆m + div(vm) = 0,

m(x , 0) = m0(x).
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Convexity of the potential problem

Reformulate the potential problem:

Change of variable (m, v)→ (m,w) := (m,mv).

This yields an equivalent convex problem:

min
(m,w)

J̃ (m,w) :=

∫∫
Q
L
(
w
m

)
m dx dt +

∫
Td

gm(·,T )dx︸ ︷︷ ︸
=:J̃1(m,w)

+

∫ T

0
φ
(∫

Td wdx
)

dt︸ ︷︷ ︸
=:J̃2(m,w)

s.t.:

{
∂tm − σ∆m + div(w) = 0,

m(x , 0) = m0(x).
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GCG

The linearized problem at (m̄k , w̄k) reads:

min
(m,w)

∫∫
Q
L
(
w
m

)
m dx dt +

∫
Td

gm(·,T )dx

+

∫ T

0

〈
ψ
(∫

Td w̄kdx
)
,
∫
Td wdx

〉
dt

s.t.:

{
∂tm − σ∆m + div(w) = 0,

m(x , 0) = m0(x).

Let us set:
λk = ψ

(∫
Td w̄kdx

)
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GCG

After change of variable (m, v) = (m,w/m), we obtain the
following linearized problem:

min
(m,v)

∫∫
Q

(
L(v) + 〈λk , v〉

)
m dx dt +

∫
Td

gm(·,T )dx

s.t.:

{
∂tm − σ∆m + div(mv) = 0,

m(x , 0) = m0(x).

Observation: the linearized problem is the potential formulation
of the stochastic control problem of the representative agent, for
λ = λk .

A solution (mk ,wk) is found as follows:

Compute uk = HJB(λk), vk = −∇H(∇uk + λk).

Compute mk = FP(vk), wk = mkvk .
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Application of GCG

Algorithm 3: Fictitious play

Input: v̄0; Compute: m̄0 = FP(v̄0), w̄0 = m̄0v̄0;
for k = 0, 1, ... do

[Prediction] Compute λk = ψ
( ∫

Td w̄k dµ(y)
)
. (iv)

[Best-resp.] Compute uk = HJB(λk). (i)
Set vk = −∇H(∇uk + λk). (ii)
Compute mk = FP(vk). (iii)
Set wk = mkvk .

[Learning] Choose δk ∈ [0, 1].
Set m̄k+1 = (1− δk)m̄k + δkmk .
Set w̄k+1 = (1− δk)w̄k + δkwk .

end
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Theorem

The GCG algorithm is well-posed. It generates sequences
(m̄k , w̄k) and (mk ,wk) in (C 2,1(Q)× C 1,0(Q)), vk ∈ C 1,0(Q),
uk ∈ C 2,1(Q), and Pk ∈ C 0([0,T ]).

Let εk = J̃ (m̄k , w̄k)− J̃ (m̄, w̄). There exist constants C > 0
and γ ∈ (0, 1) such that

If δk =
1

k + 1
, then εk ≤

C ln(k)

k
.

If δk =
2

k + 2
, then εk ≤

C

k
.

If δk is determined by an adaptative rule, then εk ≤ Cγk .

Moreover,

‖m̄k − m̄‖L∞(0,T ;L2(Td )) + ‖w̄k − w̄‖L2(Q)

+‖Pk − P̄‖L2(0,T ) + ‖uk − ū‖L∞(Q) ≤ C
√
εk .
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Elements of proof

Well-posedness: based on estimates for parabolic PDEs.

Linear convergence: the cost J̃ is not strongly convex →
difficulty.

Let k ∈ N. The challenge is to prove estimates of the form:

‖m̄k −mk‖ = O(
√
σk) and ‖w̄k − wk‖ = O(

√
σk).

Let v̄k = w̄k/m̄k . By construction:

The feedback vk is optimal for the stochastic optimal control
problem with λ = λk .

The feedback v̄k is σk -optimal for this problem.



GCG A potential game Heuristic derivation GCG for MFG

Elements of proof

A standard calculation (involving some integration by parts yields)

σk = Jlin(v̄k)− Jlin(vk) ≥
∫∫

Q
m̄k‖v̄k − vk‖2.

Let ζk = m̄k(v̄k − vk). We have ‖ζk‖L2(Q) ≤
√
σk .

Let µ = m̄k −mk . It is the solution to the PDE

µt −∆µ+ div(µvk) = −div(ζk).

The classical theory of parabolic PDEs yields the estimate

‖µ‖L∞(0,T ;L2(Td )) ≤ C‖ζ‖L2(Q).

We finally obtain

‖w̄k − wk‖L2(Q) = ‖ζ + µvk‖L2(Q) ≤ C
√
σk .
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Convergence results

(a) Gap ln(εk) (b) Stepsize δk

Figure: Convergence results for an MFG with price term
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Convergence results

(a) Gap ln(εk) (b) Stepsize δk

Figure: Convergence results for an MFG with congestion term
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Thank you for your attention!
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