A potential game

Heuristic derivation

GCG for MFG

Generalized conditional gradient method for potential mean field games

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Joint work with Pierre Lavigne (Institut Louis Bachelier)

Séminaire français d'optimisation February 3, 2022

(naío-

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GCG	A potential game	Heuristic derivation	GCG for MFG
00000000000	00000000000	00000000	00000000000000
Introduction			

- Description of the generalized conditional gradient (GCG) algorithm (an extension of the Frank-Wolfe algorithm).
 Linear convergence for adaptive stepsize rules (in a simple setting).
- 2 For a simple class of potential games, the GCG algorithm is a **best-response procedure**.
- **3** Heuristic derivation of the **mean-field game** (MFG) of interest.
- Application of the GCG method to MFGs, interpretation and convergence results.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Generalized conditional gradient

2 Application to a simple potential game

3 Heuristic derivation of the mean field game system

4 Generalized condition gradient for mean-field games

GCG ○●0000000000	A potential game	Heuristic derivation	GCG for MFG
General setting			

Consider the following problem:

 $\inf_{x\in\mathbb{R}^n} f(x) := f_1(x) + f_2(x), \quad \text{subject to: } x \in K. \tag{\mathcal{P}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assumptions:

- $K \subseteq \mathbb{R}^n$ is convex
- $f_1: K \to \mathbb{R}$ and $f_2: K \to \mathbb{R}$ are convex
- *f*₁ is lower semi-continuous
- f₂ has a Lipschitz-continuous gradient
- *K* is non-empty and compact.

Let \bar{x} denote a solution to the problem.

000000000000000000000000000000000000000	0000000000	000000000	000000000000000000000000000000000000000
			GCG for MFG

Given x ∈ ℝⁿ, we denote by f_{lin}[x]: ℝⁿ → ℝ the (partial) linearization of f at x, defined by:

 $f_{\text{lin}}[x](y) = f_1(y) + f_2(x) + \langle \nabla f_2(x), y - x \rangle.$

Since f_2 is convex, $f_{\text{lin}}[x](y) \leq f(y)$ for all $x \in \mathbb{R}^n$.

• We consider the **linearized problem** at *x*, defined by

 $\inf_{y \in \mathbb{R}^n} f_{\text{lin}}[x](y), \quad \text{subject to: } y \in K. \qquad (\mathcal{P}_{\text{lin}}(x))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumption: $\mathcal{P}_{lin}(x)$ is **numerically easy to solve**, for any $x \in K$.

• We call **primal-dual gap** the number $\sigma(x)$ defined by

$$0 \le \sigma(x) = f_{\text{lin}}x - \left(\inf_{y \in \mathcal{K}} f_{\text{lin}}[x](y)\right).$$

Subproblem	00000000000	00000000	000000000000000000000000000000000000000
GCG ○○●○○○○○○○○○	A potential game 000000000000	Heuristic derivation	GCG for MFG

Given x ∈ ℝⁿ, we denote by f_{lin}[x]: ℝⁿ → ℝ the (partial) linearization of f at x, defined by:

 $f_{\text{lin}}[x](y) = f_1(y) + f_2(x) + \langle \nabla f_2(x), y - x \rangle.$

Since f_2 is convex, $f_{\text{lin}}[x](y) \leq f(y)$ for all $x \in \mathbb{R}^n$.

• We consider the **linearized problem** at *x*, defined by

 $\inf_{y \in \mathbb{R}^n} f_{\text{lin}}[x](y), \quad \text{subject to: } y \in \mathcal{K}. \tag{$\mathcal{P}_{\text{lin}}(x)$)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assumption: $\mathcal{P}_{lin}(x)$ is numerically easy to solve, for any $x \in K$.

• We call **primal-dual gap** the number $\sigma(x)$ defined by

$$0 \le \sigma(x) = f_{\text{lin}}x - \left(\inf_{y \in K} f_{\text{lin}}[x](y)\right).$$

Subproblem			
GCG 0000000000	A potential game	Heuristic derivation	GCG for MFG

Given x ∈ ℝⁿ, we denote by f_{lin}[x]: ℝⁿ → ℝ the (partial) linearization of f at x, defined by:

 $f_{\text{lin}}[x](y) = f_1(y) + f_2(x) + \langle \nabla f_2(x), y - x \rangle.$

Since f_2 is convex, $f_{\text{lin}}[x](y) \leq f(y)$ for all $x \in \mathbb{R}^n$.

• We consider the **linearized problem** at *x*, defined by

 $\inf_{y \in \mathbb{R}^n} f_{\text{lin}}[x](y), \quad \text{subject to: } y \in \mathcal{K}. \tag{$\mathcal{P}_{\text{lin}}(x)$)}$

Assumption: $\mathcal{P}_{lin}(x)$ is **numerically easy to solve**, for any $x \in K$.

• We call **primal-dual gap** the number $\sigma(x)$ defined by

$$0 \leq \sigma(x) = f_{\text{lin}}x - \Big(\inf_{y \in K} f_{\text{lin}}[x](y)\Big).$$

 A potential game

Heuristic derivation

GCG for MFG

Optimality certificate

Lemma

Let $x \in K$. Then, x is $\sigma(x)$ -optimal, that is to say,

 $f(x) \leq f(\bar{x}) + \sigma(x).$

Proof. By definition, we have

$$-\sigma(x) = -f_{\mathsf{lin}}x + \inf_{y \in \mathcal{K}} f_{\mathsf{lin}}[x](y) \leq -f(x) + f_{\mathsf{lin}}[x](\bar{x}).$$

Finally, we have $f_{\text{lin}}[x](\bar{x}) \leq f(\bar{x})$. Therefore,

$$-\sigma(x) \leq -f(x) + f(\bar{x}).$$

Remark. The condition $\sigma(x) = 0$ is also a **necessary** condition of optimality.

GCG 0000000000	A potential game	Heuristic derivation	GCG for MFG
Algorithm			

Algorithm 1: Generalized conditional gradient algorithm

Input:
$$\bar{x}_0 \in K$$
;
for $k = 0, 1, ...$ do
Find a solution x_k to $\mathcal{P}_{\text{lin}}(\bar{x}_k)$;
Choose a stepsize $\delta_k \in [0, 1]$;
Set $\bar{x}_{k+1} = (1 - \delta_k)\bar{x}_k + \delta_k x_k$;
end

Theorem

There exists a constant C > 0 such that the following holds true.

If
$$\delta_k = \frac{1}{k+1}$$
, then $f(\bar{x}_k) \leq f(\bar{x}) + \frac{C \ln(k)}{k}$, $\forall k > 1$.
If $\delta_k = \frac{2}{k+2}$, then $f(\bar{x}_k) \leq f(\bar{x}) + \frac{C}{k}$, $\forall k > 0$.

GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG
References			

When $f_1 = 0$, the GCG algorithm coincides with the well-known **Frank-Wolfe** algorithm.

Frank, Wolfe. An algorithm for quadratic programming. *Naval research logistics quarterly*, 1956.

Earliest reference about the GCG algorithm:

Bredies, Lorenz, Maass. A generalized conditional gradient method and its connection to an iterative shrinkage method. *Computational Optim. and App.*, 2009.

The linear convergence rate exhibited next is adapted from

Kunisch, Walter. On fast convergence rates for generalized conditional gradient methods with backtracking stepsize, *ArXiv* preprint, 2021.

An adaptative stepsize rule

Theorem

Assume the following:

- The set *K* is non-empty, convex, and closed.
- The function f_1 is l.s.c. and α -strongly convex over K.
- The function f_2 is convex with an *L*-Lipschitz gradient.

Consider the adaptative stepsize rule

$$\delta_k = \min\left(\frac{\sigma_k}{LD_k^2}, 1\right),$$

where $\sigma_k = \sigma(\bar{x}_k)$ and $D_k = ||x_k - \bar{x}_k||$.

Then there exists $\lambda \in [0,1)$ such that

 $f(\bar{x}_k) - f(\bar{x}) \le \lambda^k (f(\bar{x}_0) - f(\bar{x})), \quad \forall k \in \mathbb{N}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▼ ④ ▲ ⊙ ▲ ⊙

GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG
Motivation			

Let $k \in \mathbb{N}$. For $\delta \in [0, 1]$, we set $x_{\delta} = (1 - \delta)\bar{x}_k + \delta x_k$. We have the following upper bound:

$$egin{aligned} f(x_\delta) &= f_1(x_\delta) + f_2(x_\delta) \ &\leq igg[(1-\delta)f_1(ar{x}_k) + \delta f_1(x_k)ig] \ &+ igg[f_2(ar{x}_k) + \delta \langle
abla f_2(ar{x}_k), x_k - ar{x}_k
angle + rac{L\delta^2}{2}D_k^2igg]. \end{aligned}$$

Re-arraging:

$$f(x_{\delta}) - f(\bar{x}_k) \leq h(\delta) := -\delta \sigma_k + \frac{L\delta^2}{2}D_k^2.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The chosen stepsize $\delta_k = \min(\frac{\sigma_k}{LD_k^2}, 1)$, minimizes *h* over [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof

Proof of the theorem.

Step 1. A bound of D_k .

- By construction x_k minimizes $f_{\text{lin}}[\bar{x}_k](\cdot)$ over K.
- The point \bar{x}_k is σ_k -optimal for this minimization problem.
- Moreover, $f_{\text{lin}}[\bar{x}_k](\cdot)$ is α -strongly convex (since f_1 is α -strongly convex).

Therefore,

$$D_k^2 = \|x_k - \bar{x}_k\|^2 \le \frac{2\sigma_k}{\alpha}.$$

Remark. The strong convexity of f_1 is only used at this step of the proof.

GCG ○○○○○○○○○○○○	A potential game	Heuristic derivation	GCG for MFG
Proof			

Step 2. A bound of
$$h(\delta_k)$$
.
• Case 1: $\sigma_k \ge LD_k^2$. Then $\delta_k = 1$ and
 $h(\delta_k) = -\sigma_k + \frac{L}{2}D_k^2 \le -\frac{1}{2}\sigma_k$.
• Case 2: $\sigma_k < LD_k^2$. Then $\delta_k = \frac{\sigma_k}{LD_k^2}$ and
 $h(\delta_k) = -\frac{\sigma_k^2}{2LD_k^2} \le -\frac{\sigma_k\alpha}{4L}$.
Therefore, $h(\delta_k) \le -\omega\sigma_k$, where $\omega = \min\left(\frac{1}{2}, \frac{\alpha}{4L}\right) > 0$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Heuristic derivation

GCG for MFG

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Step 3. Conclusion. We deduce that

$$egin{aligned} f(ar{x}_{k+1})-f(ar{x})&=f(x_{\delta_k})-f(ar{x})\ &\leq (f(ar{x}_k)-f(ar{x}))+h(\delta_k)\ &\leq (f(ar{x}_k)-f(ar{x}))-\omega\sigma_k\ &\leq (f(ar{x}_k)-f(ar{x}))-\omega(f(ar{x}_k)-f(ar{x}))\ &= (1-\omega)(f(ar{x}_k)-f(ar{x})). \end{aligned}$$

Variants

Some other adaptative stepsize rules can be considered.

Exact minimization:

 $\delta_k \in \underset{\delta \in [0,1]}{\operatorname{argmin}} f(x_\delta).$

Armijo-Goldstein rule: given $\gamma \in (0,1)$ and $\eta \in (0,1)$,

$$\delta_k \in \operatorname{argmax}\left\{\delta \mid f(x_\delta) \leq f(\bar{x}_k) - \eta \delta \sigma_k, \ \delta = \gamma^j, \ j = 0, 1, ...
ight\}$$

The result of the theorem remains true for these choices of rules. They do not require the knowledge of L.

1 Generalized conditional gradient

2 Application to a simple potential game

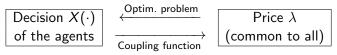
3 Heuristic derivation of the mean field game system

4 Generalized condition gradient for mean-field games

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

GCG	A potential game	Heuristic derivation	GCG for MFG
00000000000	○●0000000000		00000000000000
Model			

- Let (Y, J, µ) be a probability space. We consider a continuum of agents, characterized by a **parameter** y ∈ Y, with probability distribution µ.
- The game involves two variables:
 - the decisions X ∈ L[∞](Y; ℝ^d); X(y) is the decision of the agents with parameter y
 - a **price** variable $\lambda \in \mathbb{R}^d$, common to all agents.



Non-atomic agents: they do not take into account their own impact on λ in the optimization problem.

GCG	A potential game	Heuristic derivation	GCG for MFG
00000000000	○○●○○○○○○○○		00000000000000
Model			

The decision variables X satisfy

 $X(y) \in \operatorname*{argmin}_{x \in X_{\mathrm{ad}}} f_{\lambda,y}(x) := \ell(x,y) + \langle \lambda, x \rangle, \qquad (\mathcal{P}_{\lambda,y})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $X_{ad} \subseteq \mathbb{R}^d$ and $\ell \colon X_{ad} \times Y \to \mathbb{R}$.

• The price $\lambda \in \mathbb{R}^d$ is deduced from $X \in L^\infty(Y, \mathbb{R}^d)$ through

$$\lambda = \psi \Big(\int_Y X(y) \, \mathrm{d} \mu(y) \Big),$$

where the price function $\psi \colon \mathbb{R}^d \to \mathbb{R}^d$ is given.

Interpretation: Cournot equilibrium, $\int_Y X(y) d\mu(y)$ is a demand of some product.

Example

Theorem

Assume the following:

- The set X_{ad} is convex and closed.
- The cost $\ell(\cdot, y)$ is α -strongly convex over X_{ad} , for any $y \in Y$.
- There exists C > 0 and $x_0 \in X_{ad}$ such that for all $x \in X_{ad}$ and for all $y \in Y$,

$$\ell(x,y) \geq rac{1}{C} \|x\|^2 - C$$
 and $\ell(x_0,y) \leq C$.

The function ψ is Lipschitz-continuous and bounded over X_{ad} . Then **there exists** a pair $(X, \lambda) \in L^{\infty}(Y; \mathbb{R}^d) \times \mathbb{R}^d$ which is **solution** to the game.

GCG 00000000000	A potential game ○○○○●○○○○○○○	Heuristic derivation	GCG for MFG
Proof			

Proof.

- It is easy to verify that for all $\lambda \in \mathbb{R}^d$, for all $y \in Y$, the problem $\mathcal{P}_{\lambda,y}$ has a unique solution $X_{\lambda}(y)$.
- Moreover, $X_\lambda(\cdot) \in L^\infty(Y; \mathbb{R}^d)$ and the mapping

$$\lambda \in \mathbb{R}^d \mapsto X_\lambda \in L^\infty(Y; \mathbb{R}^d),$$

called **best-response** function, is Lipschitz-continuous.

The game boils down to the fixpoint relation

$$\lambda = \theta(\lambda) := \psi \Big(\int_Y X_\lambda(y) \, \mathrm{d}\mu(y) \Big).$$

Let C > 0 denote a bound of ||ψ|| over X_{ad}. The mapping θ is continuous from B
_{R^d}(C) to B
_{R^d}(C). Thus by the Schauder fixpoint theorem, there exists λ such that λ = θ(λ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heuristic derivation

Potential formulation

Theorem

Consider the assumptions of the previous theorem. Assume moreover that there exists a convex function $\phi \colon \mathbb{R}^d \to \mathbb{R}$ such that

 $\psi = \nabla \phi.$

Then there exists a **unique** solution $(\bar{X}, \bar{\lambda})$ to the game. Moreover, \bar{X} is the unique solution to the following **potential problem**:

$$\min_{X \in L^{\infty}(Y;X_{\mathrm{ad}})} F(X) := \int_{Y} \ell(X(y), y) \, \mathrm{d}\mu(y) + \phi\Big(\int_{Y} X(y) \, \mathrm{d}\mu(y)\Big).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\begin{aligned} \frac{\text{GCG}}{\text{Proof}} & \text{A potential game} & \text{Heuristic derivation} & \text{GCG for MFG} \\ \hline \text{Proof} \end{aligned}$$

$$\text{Let } (\bar{X}, \bar{\lambda}) \text{ be a solution. Then, for any } X \in L^{\infty}(Y; X_{ad}),$$

$$F(X) - F(\bar{X}) = \int_{Y} \left(\ell(X(y), y) - \ell(\bar{X}(y), y) \right) d\mu(x) \\ + \phi \left(\int_{Y} X(y) d\mu(y) \right) - \phi \left(\int_{Y} \bar{X}(y) d\mu(y) \right) \\ \geq \int_{Y} \left(\ell(X(y), y) - \ell(\bar{X}(y), y) \right) d\mu(x) \\ + \left\langle \underbrace{\nabla \phi(\int_{Y} \bar{X}(y) d\mu(y))}_{=\bar{\lambda}}, \int_{Y} X(y) d\mu(y) - \int_{Y} \bar{X}(y) d\mu(y) \right\rangle \\ = \int_{Y} \left[\left(\ell(X(y), y) + \langle \bar{\lambda}, X(y) \rangle \right) - \left(\ell(\bar{X}(y), y) + \langle \bar{\lambda}, \bar{X}(y) \rangle \right) \right] d\mu(y) \\ = \int_{Y} \left[f_{\bar{\lambda}, y}(X(y)) - f_{\bar{\lambda}, y}(\bar{X}(y)) \right] d\mu(y) \geq 0. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conclusion.

- It follows that \bar{X} minimizes F.
- It is easy to verify that F is α-strongly convex (in L²_μ(Y; ℝ^d)), thus F has a unique minimizer.
- As a consequence, the solution to the game is unique.

GCG A potential game Heuristic derivation

GCG for MFG

Application of GCG

The proof of the potential formulation reveals a **suitable decomposition** $F = F_1 + F_2$ for the application of the generalized conditional gradient method! We define

$$F_1(X) = \int_Y \ell(X(y), y) \,\mathrm{d}\mu(x)$$
 and $F_2(x) = \phi\Big(\int_Y X(y) \,\mathrm{d}\mu(y)\Big).$

Let \bar{X}_k and $X \in L^{\infty}(Y; \mathbb{R}^d)$. Let $\lambda_k = \nabla \phi (\int_Y \bar{X}_k(y) d\mu(y))$. We have

$$F_{\text{lin}}[\bar{X}_k](X) = \int_Y \left(\underbrace{\ell(X(y), y) + \langle \lambda_k, X(y) \rangle}_{f_{\lambda_k, y}(X(y))} \right) d\mu(y) + \text{Constant.}$$

The unique minimizer of $F_{\text{lin}}[\bar{X}_k]$ is the **best-response** function $X_k = X_{\lambda_k}$.

GCG	A potential game	Heuristic derivation	GCG for MFG
00000000000	○000000000000		00000000000000
Application of (GCG		

Algorithm 2: Fictitious playInput: $\bar{X}_0 \in L^{\infty}(Y, X_{ad})$;for k = 0, 1, ... do[Prediction]Compute $\lambda_k = \nabla \phi \left(\int_Y \bar{X}_k(y) d\mu(y) \right)$.[Best-response]Compute $X_k = X_{\lambda_k}(\cdot)$.[Learning]Set $\bar{X}_{k+1} = (1 - \delta_k)\bar{X}_k + \delta_k X_k$,
for some $\delta_k \in [0, 1]$.end

The GCG algo. (with $\delta_k = \frac{1}{k+1}$) coincides with the **fictitious play**.

The contribution F_1 of the potential cost is strongly convex in $L^2_{\mu}(Y; \mathbb{R}^d)$, thus **linear convergence** can be achieved.

Exploitability

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The primal-dual gap is given by

$$\sigma(\bar{X}_k) = F_{\text{lin}}\bar{X}_k - F_{\text{lin}}[\bar{X}_k](X_{\lambda_k})$$

=
$$\int_{Y} \underbrace{\left[f_{\lambda_k, y}(\bar{X}_k(y)) - \inf_{\substack{x \in X_{\text{ad}}}} f_{\lambda_k, y}(x)\right]}_{\text{Best possible improvement for agent } y, \text{ assuming } \lambda_k \text{ fixed}} d\mu(y) \ge 0.$$

In the present context, $\sigma(\bar{X}_k)$ is referred to as **exploitability**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

Connexion "best-reply" and Frank-Wolfe in a continuous-time setting:

Sorin. Continuous Time Learning Algorithms in Optimization and Game Theory, *Dynamic Games and Applications*, 2022.

Applying Frank-Wolfe to potential games is an old idea:

Fukushima. A modified Frank-Wolfe algorithm for solving the traffic assignment problem, *Transportation research*, 1984.

1 Generalized conditional gradient

2 Application to a simple potential game

3 Heuristic derivation of the mean field game system

4 Generalized condition gradient for mean-field games

・ロト・日本・日本・日本・日本・日本

GCG	A potential game	Heuristic derivation	GCG for MFG	
00000000000		•••••••	00000000000000	
N-player differential game				

We begin with a differential game with N players.

Data:

- *N* i.i.d. random variables $(\bar{X}_0^i)_{i=1,...,N}$ in \mathbb{R}^d , with probability distribution $m_0 \in \mathcal{P}(\mathbb{R}^n)$
- N independent Brownian motions $(W_t^i)_{t \in [0,T], i=1,...,N}$
- a running cost $L \colon \mathbb{R}^d \to \mathbb{R}$
- a terminal cost $g: \mathbb{R}^d \to \mathbb{R}$
- a price function $\psi \colon \mathbb{R}^d \to \mathbb{R}^d$.

Decision variables of the agent *i*:

- a control A^i (an adapted stochastic process)
- the associated state Xⁱ, solution to:

$$\mathrm{d} X^i_t = A^i_t \, \mathrm{d} t + \sqrt{2} \, \mathrm{d} W^i_t, \quad X^i_0 = \ \bar{X}^i_0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

00000000000	occorrection game	0000000	000000000000000000000000000000000000000
000000000000		00000000	000000000000000000000000000000000000000
GCG	A potential game	Heuristic derivation	GCG for MFG

N-player differential game

Equilibrium problem: find N + 1 stochastic processes $(\bar{A}^1, ..., \bar{A}^N)$ and λ such that

 $\begin{cases} \bar{A}^{i} \in \underset{A^{i} \in \mathbb{L}^{2}(0,T;\mathbb{R}^{d})}{\operatorname{argmin}} J[\lambda](A^{i}) \\ \text{where } J[\lambda](A^{i}) = \mathbb{E}\Big[\int_{0}^{T} \left(L(A^{i}_{t}) + \langle \lambda_{t}, A^{i}_{t} \rangle\right) dt + g(X^{i}_{T})\Big] \end{cases}$

and

$$\lambda_t = \psi \Big(\frac{1}{N} \sum_{j=1}^N \bar{A}_t^j \Big).$$

・ロト・西ト・田・・田・ ひゃぐ

A potential game

Heuristic derivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mean-field game (MFG): a **limit** model for the above game, as N goes to infinity. At the limit, we "expect":

- the price λ to be deterministic
- the controls of the agents to have the same distribution and to be independent.

The MFG can be posed as an equilibrium problem involving a single pair (\bar{X}, \bar{A}) (for a "representative agent") and λ :

$$\begin{cases} \bar{A} \in \underset{A \in \mathbb{L}^{2}(0,T;\mathbb{R}^{d})}{\operatorname{argmin}} J[\lambda](A) \\ \text{where } J[\lambda](A) = \mathbb{E}\Big[\int_{0}^{T} \left(L(X_{t},A_{t}) + \langle \lambda_{t},A_{t} \rangle \right) dt + g(X_{T}) \Big] \end{cases}$$

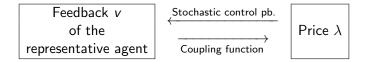
and

$$\lambda_t = \psi \big(\mathbb{E}[\bar{A}_t] \big).$$

PDE formulation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

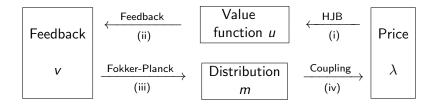
In the PDE formulation of the problem, the optimal control is characterized via a **feedback function** v which is such that $\bar{A}_t = v(\bar{X}_t, t)$, almost surely.



GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG	
PDE formulation				

Our MFG model involves two additional variables:

- The feedback v is deduced from λ via the value function u.
- The price λ is deduced from v via the **distribution** m.



Remark. Our model is a mean field game of controls, since λ depends on *m* and *v*.

(i)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From λ to v.

PDE formulation

The value function u is the solution to the Hamilton-Jacobi-Bellman (HJB) equation:

$$\begin{cases} -\partial_t u - \nabla u + H(\nabla u + \lambda) = 0\\ u(T, x) = g(x), \end{cases}$$

where $H(p) = \sup_{\alpha} (-\langle p, \alpha \rangle - L(\alpha))$. Notation: $u = HJB(\lambda)$.

The optimal feedback is given by

$$v(t,x) = -\nabla H(\nabla u(t,x) + \lambda(t)).$$
(ii)

GCG 00000000000	A potential game	Heuristic derivation ○000000●0	GCG for MFG	
PDF formulation				

From v to λ .

Let *m* denote the probability distribution of X (when v is used). Then *m* is the solution to the Fokker-Planck equation:

$$\begin{cases} \partial_t m - \Delta m + \operatorname{div}(mv) = 0, \\ m(0, x) = m_0(x). \end{cases}$$
 (iii)

Notation: m = FP(v).

Finally, λ can be described by

$$\lambda(t) = \psi \Big(\int v(t, x) m(t, x) \, \mathrm{d}x \Big). \tag{iv}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

MFG: the coupled system (i)-(iv) with unknown (m, v, u, P).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

Pioneering works:

Lasry, Lions. Mean field games, Japanese Journal of Maths., 2007.

Huang, Malhamé, Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, *Communications in Info. and Systems*, 2006.

Our work related to the model:

Bonnans, Hadikhanloo, Pfeiffer. Schauder estimates for a class of potential mean field games of controls., *Applied Maths. Optim.*, 2021.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Generalized conditional gradient

2 Application to a simple potential game

3 Heuristic derivation of the mean field game system

4 Generalized condition gradient for mean-field games

GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG ••••••••
Assumptions			

Periodicity:

g(x + y) = g(x) for all y ∈ Z^d, so that the PDEs of the MFG can be considered on Q := T^d × [0, T] with periodic boundary conditions.

Monotonicity assumptions:

- $\psi = \nabla \phi$, where ϕ is convex
- L is strongly convex.

Regularity assumptions:

- $L(v) \leq C(1 + ||v||^2)$
- $H \in C^2(\mathbb{R}^d)$, H, abla H, $abla^2 H$ are locally Hölder continuous

•
$$m_0 \in C^3(\mathbb{T}^d)$$
, $m_0 \geq 0$, $\int_{\mathbb{T}^d} m_0(x) \, \mathrm{d}x = 1$, $g \in C^3(\mathbb{T}^d)$.

GCG	

A potential game

Heuristic derivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main result

Theorem

There exists a unique **classical solution** $(\bar{m}, \bar{v}, \bar{u}, \bar{P})$ to the MFG system *(i)-(ii)-(iii)-(iv)*, with

 $ar{u}\in C^{2+eta,1+eta/2}(Q), \qquad ar{m}\in C^{2+eta,1+eta/2}(Q), \ ar{v}\in C^eta(Q), D_xv\in C^eta(Q), \ ar{P}\in C^eta(0,T), \end{cases}$

for some $\beta \in (0, 1)$.

Notation:

$$\mathcal{C}^{2+eta,1+eta}(\mathcal{Q}) := \Big\{ u \in \mathcal{C}^{eta}(\mathcal{Q}) \, | \, \partial_t u \in \mathcal{C}^{eta}(\mathcal{Q}), \
abla u \in \mathcal{C}^{eta}(\mathcal{Q}), \,
abla^2 u \in \mathcal{C}^{eta}(\mathcal{Q}) \Big\}.$$

Potential formulation					
GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG ○00●0000000000		

Consider the cost function $\mathcal{J} \colon W^{2,1,p}(Q) \times L^{\infty}(Q) \to \mathbb{R}$,

$$\mathcal{J}(m,v) = \iint_Q L(v(x,t))m(x,t)\,\mathrm{d}x\,\mathrm{d}t + \int_0^T \phi\left(\int_{\mathbb{T}^d} v(x,t)m(x,t)\,\mathrm{d}x\right)\,\mathrm{d}t.$$

Lemma (Potential formulation)

Let $(\bar{u}, \bar{m}, \bar{v}, \bar{P})$ be the solution to (MFG). Then, (\bar{m}, \bar{v}) is a solution to:

$$\min_{\substack{m \in W^{2,1,\rho}(Q) \\ v \in L^{\infty}(Q,\mathbb{R}^k)}} \mathcal{J}(m,v) \quad s.t.: \begin{cases} \partial_t m - \Delta m + div(vm) = 0, \\ m(x,0) = m_0(x). \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A potential game

Heuristic derivation

GCG for MFG

Convexity of the potential problem

Reformulate the potential problem:

• Change of variable $(m, v) \rightarrow (m, w) := (m, mv)$.

This yields an equivalent convex problem:

$$\begin{cases}
\min_{(m,w)} \tilde{\mathcal{J}}(m,w) := \underbrace{\iint_{Q} L(\frac{w}{m}) m \, dx \, dt + \int_{\mathbb{T}^{d}} gm(\cdot, T) \, dx}_{=:\tilde{\mathcal{J}}_{1}(m,w)} \\
+ \underbrace{\int_{0}^{T} \phi\left(\int_{\mathbb{T}^{d}} w \, dx\right) \, dt}_{=:\tilde{\mathcal{J}}_{2}(m,w)} \\
\text{s.t.:} \begin{cases}
\partial_{t} m - \sigma \Delta m + \operatorname{div}(w) = 0, \\
m(x,0) = m_{0}(x).
\end{cases}$$

The linearized problem at (\bar{m}_k, \bar{w}_k) reads:

$$\begin{cases} \min_{(m,w)} \iint_{Q} L\left(\frac{w}{m}\right) m \, dx \, dt + \int_{\mathbb{T}^{d}} gm(\cdot, T) \, dx \\ + \int_{0}^{T} \left\langle \psi\left(\int_{\mathbb{T}^{d}} \bar{w}_{k} \, dx\right), \int_{\mathbb{T}^{d}} w \, dx \right\rangle \, dt \\ \text{s.t.:} \begin{cases} \partial_{t} m - \sigma \Delta m + \operatorname{div}(w) = 0, \\ m(x,0) = m_{0}(x). \end{cases} \end{cases}$$

Let us set:

$$\lambda_k = \psi \left(\int_{\mathbb{T}^d} \bar{w}_k dx \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

GCG 000000000000 A potential game

Heuristic derivation

GCG for MFG

GCG

After change of variable (m, v) = (m, w/m), we obtain the following linearized problem:

$$\begin{cases} \min_{(m,v)} \iint_{Q} \left(L(v) + \langle \lambda_{k}, v \rangle \right) m \, \mathrm{d}x \, \mathrm{d}t + \int_{\mathbb{T}^{d}} gm(\cdot, T) \, \mathrm{d}x \\ \text{s.t.:} \begin{cases} \partial_{t} m - \sigma \Delta m + \operatorname{div}(mv) = 0, \\ m(x,0) = m_{0}(x). \end{cases} \end{cases}$$

Observation: the **linearized problem** is the potential formulation of the **stochastic control problem** of the representative agent, for $\lambda = \lambda_k$.

A solution (m_k, w_k) is found as follows:

- Compute $u_k = HJB(\lambda_k)$, $v_k = -\nabla H(\nabla u_k + \lambda_k)$.
- Compute $m_k = FP(v_k)$, $w_k = m_k v_k$.

	ootential game 0000000000	Heuristic derivation	GCG for MFG
Application of GC	G		
Algorithm 3: Fict Input: \bar{v}_0 ; Comput for $k = 0, 1,$ do	e: $\bar{m}_0 = FP(\bar{v}_0)$, i	$ar{v}_0=ar{m}_0ar{v}_0;$	
[Prediction]	Compute $\lambda_k = \psi$	$\sqrt{\int_{\mathbb{T}^d} \bar{w}_k d\mu(y)}.$	(iv)
[Best-resp.]	Compute $u_k = H$ Set $v_k = -\nabla H(\nabla u_k)$ Compute $m_k = H$ Set $w_k = m_k v_k$.	$\nabla u_k + \lambda_k$).	(i) (ii) (iii)
[Learning]	Choose $\delta_k \in [0, 1]$ Set $\bar{m}_{k+1} = (1 + 1)$ Set $\bar{w}_{k+1} = (1 + 1)$	$(-\delta_k)\bar{m}_k+\delta_km_k.$	
end			

A potential game

Heuristic derivation

Theorem

- The GCG algorithm is **well-posed**. It generates sequences (\bar{m}_k, \bar{w}_k) and (m_k, w_k) in $(C^{2,1}(Q) \times C^{1,0}(Q))$, $v_k \in C^{1,0}(Q)$, $u_k \in C^{2,1}(Q)$, and $P_k \in C^0([0, T])$.
- Let $\varepsilon_k = \tilde{\mathcal{J}}(\bar{m}_k, \bar{w}_k) \tilde{\mathcal{J}}(\bar{m}, \bar{w})$. There exist constants C > 0and $\gamma \in (0, 1)$ such that
 - If $\delta_k = \frac{1}{k+1}$, then $\varepsilon_k \le \frac{C \ln(k)}{k}$. • If $\delta_k = \frac{2}{k+2}$, then $\varepsilon_k \le \frac{C}{k}$.

If δ_k is determined by an **adaptative** rule, then $\varepsilon_k \leq C\gamma^k$.

Moreover,

$$\begin{split} \|\bar{m}_{k} - \bar{m}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}^{d}))} + \|\bar{w}_{k} - \bar{w}\|_{L^{2}(Q)} \\ + \|P_{k} - \bar{P}\|_{L^{2}(0,T)} + \|u_{k} - \bar{u}\|_{L^{\infty}(Q)} \leq C\sqrt{\varepsilon_{k}}. \end{split}$$

Elements of proof

- Well-posedness: based on estimates for parabolic PDEs.
- Linear convergence: the cost \tilde{J} is not strongly convex \rightarrow difficulty.

Let $k \in \mathbb{N}$. The challenge is to prove estimates of the form:

$$\|ar{m}_k - m_k\| = O(\sqrt{\sigma_k})$$
 and $\|ar{w}_k - w_k\| = O(\sqrt{\sigma_k}).$

Let $\bar{v}_k = \bar{w}_k / \bar{m}_k$. By construction:

- The feedback v_k is optimal for the stochastic optimal control problem with λ = λ_k.
- The feedback \bar{v}_k is σ_k -optimal for this problem.

GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG 000000000000000
Elements of pro	of		

A standard calculation (involving some integration by parts yields)

$$\sigma_k = \mathcal{J}_{\mathsf{lin}}(\bar{v}_k) - \mathcal{J}_{\mathsf{lin}}(v_k) \geq \iint_Q \bar{m}_k \|\bar{v}_k - v_k\|^2.$$

Let $\zeta_k = \bar{m}_k(\bar{v}_k - v_k)$. We have $\|\zeta_k\|_{L^2(Q)} \le \sqrt{\sigma_k}$. Let $\mu = \bar{m}_k - m_k$. It is the solution to the PDE

$$\mu_t - \Delta \mu + \operatorname{div}(\mu v_k) = -\operatorname{div}(\zeta_k).$$

The classical theory of parabolic PDEs yields the estimate

$$\|\mu\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}^{d}))} \leq C \|\zeta\|_{L^{2}(Q)}.$$

We finally obtain

$$\|\bar{w}_k - w_k\|_{L^2(Q)} = \|\zeta + \mu v_k\|_{L^2(Q)} \le C\sqrt{\sigma_k}.$$

GCG 000000000000 A potential game

Heuristic derivation

GCG for MFG

Convergence results

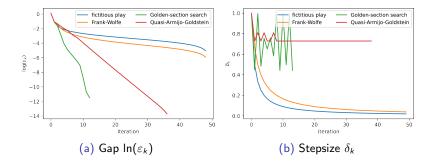


Figure: Convergence results for an MFG with price term

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GCG 000000000000 A potential game

Heuristic derivation

GCG for MFG

Convergence results

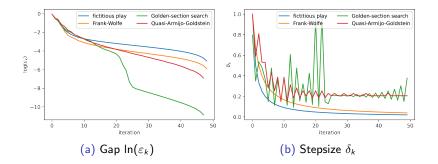


Figure: Convergence results for an MFG with congestion term

・ロト・日本・日本・日本・日本・日本

GCG 00000000000	A potential game	Heuristic derivation	GCG for MFG 000000000000
References			

Fictitious play for MFGs (non-convex potential setting):

- Cardaliaguet, Hadikhanloo. Learning in mean field games: the fictitious play, ESAIM: Control, Optimisation and Calculus of Variations, 2017.
- Frank-Wolfe for MFGs (discrete setting):
 - Elie, Piérolat, Laurière, Geist, Pietquin. Approximate fictitious play for mean field games, ArXiv preprint, 2020.

Preliminary version of our work:

Bonnans, Lavigne, Pfeiffer. Generalized conditional gradient and learning in potential mean field games, *ArXiv preprint*, 2021.

Thank you for your attention!