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Introduction

Description of the generalized conditional gradient (GCG)
algorithm (an extension of the Frank-Wolfe algorithm).

Linear convergence for adaptive stepsize rules (in a simple
setting).

For a simple class of potential games, the GCG algorithm is a
best-response procedure.

Heuristic derivation of the mean-field game (MFG) of
interest.

Application of the GCG method to MFGs, interpretation and
convergence results.
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General setting

Consider the following problem:

inﬂg f(x) := fi(x) + fa(x), subject to: x € K. (P)
xER"

Assumptions:
m K CR"is convex

fi: K—=Rand f: K — R are convex

[

m f; is lower semi-continuous

m £ has a Lipschitz-continuous gradient
[

K is non-empty and compact.

Let X denote a solution to the problem.
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Subproblem

m Given x € R”, we denote by fij,[x]: R” — R the (partial)
linearization of f at x, defined by:

fin[x](y) = fily) + fa(x) + (VA(x),y = x).

Since £, is convex, fin[x](y) < f(y) for all x € R".
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Subproblem

m Given x € R”, we denote by fij,[x]: R” — R the (partial)
linearization of f at x, defined by:

fin[x](y) = fily) + fa(x) + (VA(x),y = x).
Since £, is convex, fin[x](y) < f(y) for all x € R".

m We consider the linearized problem at x, defined by

inf fin[x](y), subjectto: y € K. (Prin(x))
yeR”?

Assumption: Pjin(x) is numerically easy to solve, for any
x € K.



GCG
0®000000000

Subproblem

m Given x € R”, we denote by fij,[x]: R” — R the (partial)
linearization of f at x, defined by:

fin[x](y) = fily) + fa(x) + (VA(x),y = x).
Since £, is convex, fin[x](y) < f(y) for all x € R".
m We consider the linearized problem at x, defined by
inf finll(y),  subject to: y € K. (Pin(x))

Assumption: Pjin(x) is numerically easy to solve, for any
x € K.

m We call primal-dual gap the number o(x) defined by

0 < o(x) = finlx](x) - (yig,f< finlXI(1) )
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Optimality certificate

Let x € K. Then, x is o(x)-optimal, that is to say,

f(x) < f(x) + o(x).

Proof. By definition, we have
000 = ~ialed0) + Inf fnbI(0) < () + I(3)
Finally, we have fj,[x](x) < f(X). Therefore,

—o(x) < —f(x) + f(X).

Remark. The condition o(x) = 0 is also a necessary condition of
optimality.
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Algorithm

Algorithm 1: Generalized conditional gradient algorithm

Input: X € K;

for k=0,1,...do
Find a solution xx to Pjin(Xk);
Choose a stepsize dx € [0, 1];
Set Xk41 = (1 — (5[())_([( + O Xk

end

Theorem

There exists a constant C > 0 such that the following holds true.

m If 6 = lerl then (%) < f(X) + C",l(k) Vk > 1.

2 C
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An adaptative stepsize rule

Assume the following:
m The set K is non-empty, convex, and closed.
m The function f is l.s.c. and a-strongly convex over K.

m The function £ is convex with an L-Lipschitz gradient.

Consider the adaptative stepsize rule

. Ok
di = min 775.1),
k n i l%
where O = U()_q() and Dk = ||Xk — )_(kH

Then there exists A € [0, 1) such that

f(%) — f(X) < M(f(%0) — f(X)), VkeN.
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Motivation

Let k € N. For 6 € [0, 1], we set x5 = (1 — )Xk + dxx. We have
the following upper bound:

FO5) = () + ()
[ 1 — 5)f1 Xk —|- 5f1(Xk)]
_ Ls?
+ | B(%0) + 8(VA(R), i — %) + —5-DF|.

Re-arraging:

_ L2
f(xs) — f(xx) < h(0) := —dox + —Dk

The chosen stepsize 6, = min (LD2’1)’ minimizes h over [0, 1].



GCG
0000000e000

Proof

Proof of the theorem.

Step 1. A bound of Dy.
m By construction xx minimizes f;,[Xx](-) over K.
m The point X, is o-optimal for this minimization problem.

m Moreover, fiin[Xk]() is a-strongly convex (since f; is
a-strongly convex).
Therefore,

_ 20
DF = | — %> < —.

Remark. The strong convexity of f; is only used at this step of the
proof.
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Proof

Step 2. A bound of h(d).
m Case 1: o4 > LD,%. Then é, =1 and

L 1
h((Sk) = —0k + EDI% < —§O'k.

m Case 2: 0 < LD. Then 6, = ;% and
k

O'i O

2LD2 = 4L°

h(dx) =

1
Therefore, h(dx) < —wo, where w = min (5, %) > 0.



Step 3. Conclusion.
We deduce that

f(Xk+1) — £(X)

= f(x5,) = (%)

< (F(%) = (X)) + h(0%)

< (F(%) — f(X)) — wo

< (F(x) = (%)) — w(f (%) = £(X))
)
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Variants

Some other adaptative stepsize rules can be considered.

m Exact minimization:

dk € argmin f(xs).
6€[0,1]

m Armijo-Goldstein rule: given v € (0,1) and 1 € (0, 1),
ok € argmax{5 | F(x5) < F(Xk) — ndo, 6 = v, j=0,1, }

The result of the theorem remains true for these choices of rules.
They do not require the knowledge of L.
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Application to a simple potential game
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m Let (Y,), 1) be a probability space. We consider a
continuum of agents, characterized by a parameter y € Y/,
with probability distribution .

m The game involves two variables:
m the decisions X € L°(Y;R9); X(y) is the decision of the
agents with parameter y

m a price variable A € R?, common to all agents.

Optim. problem

Decision X(:) | «———— Price A
of the agents (common to all)

Coupling function

m Non-atomic agents: they do not take into account their own
impact on X\ in the optimization problem.
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Model

m The decision variables X satisfy

X(y) € arg)n:in fay(X) = L(x,y) + (A, x), (Pay)
XEXad

where X;g CR? and £: Xog X Y — R.

m The price A € R? is deduced from X € L>(Y,R) through

A= [ X0)aun).

where the price function ¢: R? — RY is given.

Interpretation: Cournot equilibrium, [\, X(y)du(y) is a demand
of some product.



A potential game
00@00000000

Example

Assume the following;:

m The set X,q is convex and closed.
m The cost (-, y) is a-strongly convex over X,q, for any y € Y.

m There exists C > 0 and xg € X,q such that for all x € X,4 and
forall y € Y,

1
Ux,y) > EHXHQ —C and {(xp,y) < C.
m The function ¢ is Lipschitz-continuous and bounded over X,q.

Then there exists a pair (X, \) € L°(Y;R9) x R which is
solution to the game.
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Proof

Proof.

m It is easy to verify that for all A € RY, for all y € Y, the
problem P, , has a unique solution Xy (y).

m Moreover, X, () € L®(Y;R9) and the mapping
AeRY— Xy € L2°(Y;RY),

called best-response function, is Lipschitz-continuous.

m The game boils down to the fixpoint relation

A =000 = /Y Xa(y) du(y)).

m Let C > 0 denote a bound of [|¢)|| over X;q. The mapping ¢ is
continuous from By (C) to Bra(C). Thus by the Schauder
fixpoint theorem, there exists A such that A = 6(\).
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Potential formulation

Theorem

Consider the assumptions of the previous theorem. Assume
moreover that there exists a convex function ¢: R? — R such that

Y =Vo.

Then there exists a unique solution (X, ) to the game. Moreover,
X is the unique solution to the following potential problem:

rattin  FO) = [ ax) ) dut)+ o [ Xt)dutn).

o’
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Conclusion.
m It follows that X minimizes F.

m It is easy to verify that F is a-strongly convex (in Li(Y;]Rd)),
thus F has a unique minimizer.

m As a consequence, the solution to the game is unique.
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Application of GCG

The proof of the potential formulation reveals a suitable
decomposition F = F; 4+ F; for the application of the generalized
conditional gradient method! We define

:/é(X(y),y)du(x) and  Falx /x e
Y

Let Xk and X € L®(Y;RY). Let Ak = Vo( [y, Xi(y) du(y)). We
have

Fiin[Xk](X) = /Y (E(X(y),y) + (A, X(v)) ) du(y) + Constant.

oy (X(0)

The unique minimizer of Fj,[Xk] is the best-response function
X = Xy,
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Application of GCG

Algorithm 2: Fictitious play

Input: Xp € L®(Y, Xaq);

for k=0,1,...do

[Prediction] Compute A\, = Vo ( [y, Xi(y) du(y))-

[Best-response]  Compute X = Xj, (+).

[Learning] Set )_(k+1 =(1- 5k))_(k + 0k X,
for some dx € [0, 1].

end

The GCG algo. (with 0 ﬁ) coincides with the fictitious play.

The contribution F; of the potential cost is strongly convex in
L2(Y;R?), thus linear convergence can be achieved.
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Exploitability

The primal-dual gap is given by
a(Xk) = Fin[Xe](Xk) — Fiin[Xk](Xn,)

— /y [f)\k,y()_(k()’)) - Xier}zd ka,y(x)] du(y) > 0.

Best possible improvement for agent y,
assuming Ay fixed

In the present context, o(Xj) is referred to as exploitability.



A potential game
0000000000e

References

Connexion “best-reply” and Frank-Wolfe in a continuous-time
setting:

B Sorin. Continuous Time Learning Algorithms in Optimization and
Game Theory, Dynamic Games and Applications, 2022.

Applying Frank-Wolfe to potential games is an old idea:

[ Fukushima. A modified Frank-Wolfe algorithm for solving the traffic
assignment problem, Transportation research, 1984.



Heuristic derivation
°

Heuristic derivation of the mean field game system
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N-player differential game

We begin with a differential game with N players.

Data:

m N i.i.d. random variables ()?6),-:17“.7,\, in RY, with probability
distribution mg € P(R")

N independent Brownian motions (Wt")te[o’-,-]ﬂ-:l,m,,\,

® a running cost L: RY » R
a terminal cost g: RY - R
a price function v: RY — RY.

Decision variables of the agent i:
m a control A’ (an adapted stochastic process)
m the associated state X', solution to:
dX] = Aidt +v2dW/!, Xi= X{.
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N-player differential game

Equilibrium problem: find N + 1 stochastic processes (Al ..., AN)
and A such that

Al ¢ argmin  J[)\(A)
AI€L2(0, T;R9)

where J[\](A') = E[/OT (L(A';) + O, A’;>) dt + g(X#)}

and

/Stochastic control pb.

Price A

_— (common to all)
Coupling function

Decision (A%, ..., AN)
of the agents
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MFG

Mean-field game (MFG): a limit model for the above game, as N
goes to infinity. At the limit, we “expect”:

m the price A\ to be deterministic

m the controls of the agents to have the same distribution and
to be independent.

The MFG can be posed as an equilibrium problem involving a
single pair (X, A) (for a “representative agent”) and \:

Ac argmin  J[\(A)
AEL2(0, T;RY)

where J[)\](A) = E[/OT (L(Xt, At) + (At At>) dt + g(XT)}

and B
At = ¢(E[At])
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PDE formulation

In the PDE formulation of the problem, the optimal control is
characterized via a feedback function v which is such that
At = v(Xi, t), almost surely.

Feedback v Stochastic control pb.

of the Price A

. _—>
representative agent Coupling function
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PDE formulation

Our MFG model involves two additional variables:
m The feedback v is deduced from )\ via the value function u.

m The price X is deduced from v via the distribution m.

Feedback Value HJB
Feedback (i) function u (i Price
v Fokker-Planck Distribution Coupling A
_— RS
(iiif) m (iv)

Remark. Our model is a mean field game of controls, since A
depends on m and v.
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PDE formulation

From A to v.

m The value function v is the solution to the
Hamilton-Jacobi-Bellman (HJB) equation:

u(T,x) = &(x),

where H(p) = sup,, (— (p,a) — L(a)).
Notation: v = HJB(A).

{ —0iu—Vu+HNu+A)= 0

m The optimal feedback is given by

v(t,x) = —VH(Vu(t, x) + A(t)). (ii)
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PDE formulation

From v to .

m Let m denote the probability distribution of X (when v is
used). Then m is the solution to the Fokker-Planck

equation:
Orm — Am +div(mv) = 0, (ii)
1l
m(0,x) = mp(x).
Notation: m = FP(v).
m Finally, A can be described by
A(t) :¢(/v(t,x)m(t,x) dx). (iv)

MFG: the coupled system (i)-(iv) with unknown (m, v, u, P).
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Assumptions

Periodicity:
m g(x+y) = g(x) for all y € Z9, so that the PDEs of the MFG

can be considered on @ := T9 x [0, T] with periodic boundary
conditions.

Monotonicity assumptions:
m ) = V¢, where ¢ is convex

m L is strongly convex.

Regularity assumptions:
= L(v) < C(L+ V]])
m H € C?(RY), H, VH, V2H are locally Holder continuous
m ¢ is Lipschitz continuous and bounded
m my € C3(T9), my >0, [rs mo(x)dx =1, g € C3(T7).
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Main result

Theorem

There exists a unique classical solution (m, 7, i, P) to the MFG
system (i)-(ii)-(iii)-(iv), with

§ € C2HBI+B/2(Q), m e C2HBI+8/2(Q),
ve CPQ),Dyw e CQR), PecCP,T),

for some 5 € (0,1).

Notation:
CHHAIHE(Q) ::{u e C’(Q)|d:u e CP(Q),
Vue C¥(Q), Viue CP(Q)}.
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Potential formulation

Consider the cost function J: W21P(Q) x L®(Q) — R,

(m,v) // m(x, t)dxdt

—|—/0 (dev x, t)m(x, t) dx> dt.

Lemma (Potential formulation)

Let (&, m, v, P) be the solution to (MFG). Then, (m, V) is a
solution to:

—A j =
min  J(m,v) s.t.: { Orm m + div{vm) = 0,

meW?14(Q) m(x,0) = mo(x).
vEL™(Q,R¥)
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Convexity of the potential problem

Reformulate the potential problem:

m Change of variable (m,v) — (m, w) := (m, mv).
This yields an equivalent convex problem:

(mm J(m,w) // mdxdt+/ gm(-, T)dx
mW Td

::jl(m,w)

+/OT¢>(de wdx) dt

=:J(m,w)

i Orm — o Am +div(w) = 0,
o m(x,0) = mg(x).
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GCG

The linearized problem at (my, wy) reads:

I;]IS) // “IYmdxdt + /d gm(-, T)dx
+/O (16 (oo ), fos wac ) dt

b drm — o Am +div(w) = 0,
o m(x,0) = mo(x).

Let us set:

Ax = ¢( Jra v_vkdx)
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GCG

After change of variable (m, v) = (m, w/m), we obtain the
following linearized problem:

min //Q (L(v)—l—()\k,v>)mdxdt+/ngm(-,T)dx

(m,v

i 0rm — ocAm +div(mv) = 0,
o m(x,0) = mo(x).

of the stochastic control problem of the representative agent, for

Observation: the linearized problem is the potential formulation
A= Mg

A solution (my, wy) is found as follows:
m Compute vy = HIB(A\k), vk = —VH(Vuk + k).
m Compute my = FP(vk), wx = myvg.
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Application of GCG

Algorithm 3: Fictitious play

Input: Vp; Compute: mg = FP(\70), Wy = MoVp;
for k=0,1,...do

[Prediction] Compute Ax = ¢ ( [rg Wi du(y)). (iv)
[Best-resp.] Compute ux = HIB(Ax). (i)
Set v, = —VH(VUk + )\k)- (ii)
Compute my = FP(vy). (i)

Set wi = myvg.

[Learning]  Choose & € [0,1].
Set M1 = (l - 5k)r77k + O my.
Set Wikl = (1 — 5k)VT/k + O Wy

end
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m The GCG algorithm is well-posed. It generates sequences
(g, W) and (mye, wie) in (C31(Q) x CHO(Q)), vk € CH(Q),
u € C>1(Q), and P, € C°([0, T]).

m Let £ = J(my, wi) — J(m, w). There exist constants C > 0
and v € (0,1) such that

1 Cln(k)
= — < .
m If 0 k+1.thenek_ P
2 C
m If O, k+2'then€k*k

m If 5, is determined by an adaptative rule, then g, < C~*.

m Moreover,

174 = @l o0, 7:12(0ey) + Wi — Wl 12(q)
FIPk = Pllezo, 1y + lluk — ll (@) < Cv/ek-
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Elements of proof

m Well-posedness: based on estimates for parabolic PDEs.
m Linear convergence: the cost Jis not strongly convex —
difficulty.
Let kK € N. The challenge is to prove estimates of the form:

I — mi|| = O(vox) and  [[wx — wi|| = O(\/o).

Let vy = wy/myg. By construction:
m The feedback vk is optimal for the stochastic optimal control
problem with A = .
m The feedback vy is ox-optimal for this problem.
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Elements of proof

A standard calculation (involving some integration by parts yields)

ok = Jiin(Vik) — Jiin(vk) // |7k — vl

Let Ck = Mk (Vk — vk). We have [|Ckll2(q) < v/«
Let p = my — my. It is the solution to the PDE

— Ap+ div(pvi) = —div((k).
The classical theory of parabolic PDEs yields the estimate

[£ell oo 0, 71219y < ClICH 2(@)-

We finally obtain

Wk — will 2@y = II€ + pvklli2(q) < CvV/ok-
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Convergence results
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Figure: Convergence results for an MFG with price term
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Convergence results
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Figure: Convergence results for an MFG with congestion term
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Thank you for your attention!
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