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The setting: composite optimization

Minimize F (x) = f (x) + h(x), x ∈ Rn,

where:

f is a convex differentiable function with a L-Lipschitz gradient:

For all (x , y) ∈ RN × RN , we have:

f (y) 6 f (x) + 〈∇f (x), y − x〉︸ ︷︷ ︸
linear approximation

+
L

2
‖y − x‖2︸ ︷︷ ︸
=∆(x,y)

h is a convex lower semicontinuous (lsc) simple function.

↪→ Application to least square problems, LASSO (minx∈RN
1
2‖Ax − b‖2 + ‖x‖1)

↪→ Applications in Image and Signal processing, machine learning,...
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The setting: local geometry of convex functions

In this talk we assume that the composite convex function F = f + h satisfies a
quadratic growth condition around its set of minimizers:

Quadratic growth condition

There exists µ > 0 such that:

∀x ∈ Rn, F (x)− F (x∗) >
µ

2
d(x ,X ∗)2

where X ∗ = arg minF and F ∗ = minF .

Relaxation of strong convexity.

Equivalent (in the convex setting) to a global version of the  Lojasiewicz
property with an exponent 1

2 .
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Analyzing optimization algorithms in terms of ε-solution
Notion of ε-solution

Let ε > 0. The minimizers of a composite function F are characterized by:

0 ∈ ∂F (x) = ∇f (x) + ∂h(x),

or equivalently, for any γ > 0,

x = proxγh (x − γ∇f (x))

where: proxγh(x) = arg miny∈Rn γh(y) + 1
2‖y − x‖2.

Definition (ε-solution)

An iterate xk is said to be an ε-solution of minx∈Rn F (x) if:

‖g(xk)‖ 6 ε

where: g(x) := L
(
x − proxγh(x − 1

L∇f (x))
)

is the composite gradient mapping.
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Analyzing optimization algorithms in terms of ε-solution
A tractable stopping criterion

Two useful properties

1 ∀x ∈ Rn, 1
2L‖g(x)‖2 6 F (x)− F ∗ [Nesterov 2007]

I xk is an ε-solution of minx∈Rn F (x) if:

F (xk)− F ∗ 6
1

2L
ε2.

2 ∀x ∈ Rn, F (x+)− F ∗ 6 2
µ‖g(x)‖2 [Aujol Dossal Labarrière R. 2021]

A tractable stopping criterion

‖g(xk)‖ 6 ε



6/32

Outline

1 The Forward-Backward and FISTA algorithms
The Forward-Backward algorithm
FISTA a fast proximal gradient method
FB vs FISTA in the strongly convex case

2 FISTA is an automatic geometrically optimized algorithm
The dynamical system intuition
Convergence rates under some quadratic growth condition
Comparisons



7/32

Forward-Backward algorithm
Definition

Minimize F (x) = f (x) + h(x), x ∈ Rn.

Optimality condition:
0 ∈ ∇f (x) + ∂h(x)

or equivalently, for any γ > 0,

x = proxγh (x − γ∇f (x))

where: proxγh(x) = arg miny∈Rn γh(y) + 1
2‖y − x‖2.

Forward-Backward algorithm

x0 ∈ Rn

xk+1 = proxγh(xk − γ∇f (xk)), γ > 0.



8/32

Forward-Backward algorithm
Interpretation

Forward-Backward algorithm to minimize F = f + h with γ = 1
L

x0 ∈ Rn

xk+1 = prox 1
L h

(xk − 1
L∇f (xk)).

Instead of minimizing directly F = f + g , minimize at each iteration k its
quadratic upper bound:

x 7→ f (xk) + 〈∇f (xk), x − xk〉+
L

2
‖x − xk‖2 + h(x)

Hence:

xk+1 = arg min
x∈Rn

(
f (xk) + 〈∇f (xk), x − xk〉+

L

2
‖x − xk‖2 + h(x)

)
= arg min

x∈Rn

(
h(x) +

L

2
‖x − (xk −

1

L
∇f (xk))‖2 + f (xk)− 1

2L
‖∇f (xk)‖2

)
= prox 1

L h
(xk −

1

L
∇f (xk))
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Forward-Backward algorithm
Basic examples

Gradient method (h = 0, unconstrained optimization):

xk+1 = xk −
1

L
∇f (xk)

since: proxh(x) = arg miny∈Rn

(
0 + 1

2‖y − x‖2
)

= x .

Gradient projection method (h = iC , constrained convex optimization):

xk+1 = P⊥C (xk −
1

L
∇f (xk))

since: proxh(x) = arg miny∈Rn

(
iC (y) + 1

2‖y − x‖2
)

= P⊥C (x).

Iterative Soft-Thresholding Algorithm (ISTA) (h = ‖ · ‖1):

xk+1 = prox 1
L h

(xk −
1

L
∇f (xk))

with: proxγh(x) = sign(x) max(0, |x | − γ).
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Forward-Backward algorithm
Convergence rate in the convex case

Assume that F is convex. Then:

∀k > 1, F (xk)− F ∗ 6
2L‖x0 − x∗‖2

k
.

The number of iterations required by FB to reach an ε-solution in the sense that:

2L‖x0 − x∗‖2

k
6

1

2L
ε2

is at most:
4L2

ε2
‖x0 − x∗‖2

(
= O

(
L2

ε2

))
.
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FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009

yk = xk +
tk − 1

tk+1
(xk − xn−1)

xk+1 = prox 1
L h

(
yk −

1

L
∇f (yk))

)
.

where t1 = 1 and the sequence (tk)k∈N is determined as the positive root of:

t2
k+1 − tk+1 = t2

k .

For the class of convex functions, they prove:

F (xk)− F ∗ 6
2L‖x0 − x∗‖2

(k + 1)2

but they do not prove the convergence of the iterates.
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FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

Let α > 3.

yk = xk +
n

n + α
(xk − xn−1)

xk+1 = prox 1
L h

(
yk −

1

L
∇f (yk))

)
.

Initially Nesterov (1984) proposes α = 3.

For the class of composite convex functions:

∀k > 1, F (xk)− F ∗ 6
2L‖x0 − x∗‖2

(k + 1)2

and Chambolle Dossal prove the weak convergence of the iterates.

The number of iterations required for FISTA to reach an ε-solution is in O
(
L
ε

)
which better than FB !
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FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (1/3)

Assume now that F additionally satisfies some quadratic growth condition:

∀x ∈ Rn, F (x)− F ∗ >
µ

2
d(x ,X ∗)2.

Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

∀k ∈ N, F (xk)− F ∗ 6 (1− κ)k(F (x0)− F ∗).

The number of iterations required to reach an ε-solution is:

nFBε =
1

| log(1− κ)|
log

(
2L

ε2
(F (x0)− F ∗)

)
.

Convergence rate for FISTA [Su Boyd Candès 2015], [Attouch Cabot 2017].

Assume additionally that F has a unique minimizer.

∀α > 0, ∀k ∈ N, F (xk)− F ∗ = O
(
k−

2α
3

)
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FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (2/3)

F (x) =
1

2
‖Mx −Mxo‖2 + λ ‖Tx‖1

where M is a random masking operator and T an orthogonal wavelet transform.

target xo masked image Mxo solution x∗
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FB vs FISTA in the strongly convex case
Exponential rate vs Polynomial rate (3/3)

log(‖g(xk)‖) along the iterations k

FB, FISTA-restart, FISTA with α = 3, FISTA with α = 12, FISTA with α = 30.

Motivation to provide a non-asymptotic analysis of FISTA and to compare rates
in finite time !
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Nesterov accelerated algorithm for strongly convex functions
Differentiable case

Nesterov accelerated algorithm for strongly convex functions

yk = xk +
1−
√
κ

1 +
√
κ

(xk − xn−1)

xk+1 = yk − 1
L∇F (yk)

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is µ-strongly convex for some µ > 0. Let ε > 0. Then for κ = µ
L

small enough,

∀n ∈ N, F (xk)− F (x∗) 6 2(1−
√
κ)n (F (x0)− F (x∗)) ,

which means that an ε-solution can be obtained in at most:

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
. (1)

The iterations require an estimation of κ = µ
L !



17/32

FISTA in the strongly convex case
Differentiable case

log(‖g(xk)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .
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FISTA in the strongly convex case
Differentiable case

log(‖g(xk)‖) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

FISTA is efficient without knowing µ and its convergence rate does not suffer
from any underestimation of µ
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What we want to do now

FISTA: Nesterov accelerated algorithm for convex functions

• Initialization: x0 ∈ RN , x−1 = x0, ε > 0, α ≥ 3.

• Iterations (n ≥ 0): update xk and yk as follows:{
yk = xk + n

n+α (xk − xn−1)

xk+1 = prox 1
L h

(yk − 1
L∇f (yk))

until ‖g(xk)‖ ≤ ε i.e. until an ε-solution is reached.

Convergence rate analysis for a given ε > 0.

How to get bounds in finite time on F (xk)− F ∗ ?

Interpretation in terms of ε-solution:

I Since:

∀x ∈ Rn,
1

2L
‖g(x)‖2 6 F (x)− F ∗,

xk is an epsilon solution if F (xk)− F ∗ 6 1
2Lε

2.
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The dynamical system intuition
Link with the ODEs - A guideline to study optimization algorithms

General methodology to analyze optimization algorithms

Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration:
xk+1 − xk

h
+∇F (xk) = 0

Associated ODE: ẋ(t) +∇F (x(t)) = 0.

Analysis of ODEs using a Lyapunov approach:

E(t) = F (x(t))− F ∗.

E(t) = t(F (x(t))− F ∗) +
1

2
‖x(t)− x∗‖2.

Building a sequence of discrete Lyapunov energies adapted to the
optimization scheme to get the same decay rates
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Illustration for the gradient descent method
A Lyapunov analysis of the ODE ẋ(t) +∇F (x(t)) = 0

E(t) = F (x(t))− F ∗.

1 E is a Lyapunov energy (i.e. non increasing along the trajectories x(t)):

E ′(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖∇F (x(t))‖2 6 0

hence:
∀t > t0, F (x(t))− F ∗ 6 F (x0)− F ∗

2 Assume now that F is additionally µ-strongly convex. Then:

∀y ∈ RN , ‖∇F (y)‖2 > 2µ(F (y)− F ∗),

hence:

E ′(t) = −‖∇F (x(t))‖2 6 −2µ(F (x(t))− F ∗) 6 −2µE(t)

and we deduce:

∀t > t0, F (x(t))− F ∗ 6 (F (x0)− F ∗)e−2µ(t−t0).
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Gradient descent for strongly convex functions
From the continuous to the discrete

Ek = F (xk)− F ∗ with: xk+1 = xk − h∇F (xk).

Ek+1 − Ek = F (xk+1)− F (xk) 6 〈∇F (xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

6 −h
(

1− L

2
h

)
‖∇F (xk)‖2

If h < 2
L then the GD is a descent algorithm: ∀k ,F (xk+1) < F (xk).

Assume that F is additionally µ-strongly convex:

∀k, ‖∇F (xk)‖2 > 2µ(F (xk)− F ∗) = 2µEk ,
hence:

Ek+1 − Ek 6 −2µh

(
1− L

2
h

)
Ek .

For example si h = 1
L we get:

∀k , Ek+1 − Ek 6 −µ
L
Ek ⇒ Ek 6 (1− µ

L
)kE0

hence:
F (xk)− F ∗ 6 (F (x0)− F ∗)(1− µ

L
)k .
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The Nesterov’s accelerated gradient method
Link with the ODEs

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

xk+1 = yk − h∇F (yk) with yk = xn +
n

n + α
(xn − xn−1)

can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0 (ODE)

With ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

Advantages of the continuous setting

1 A simpler Lyapunov analysis, better insight

2 Optimality of bounds
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Convergence analysis of the Nesterov gradient method
Convergence rates in the continuous setting

Let F : RN → R be a differentiable convex function and x∗ ∈ arg min(F ) 6= ∅.

If α > 3,

F (x(t))− F (x∗) = O
(

1

t2

)
[Attouch, Chbani,

Peypouquet, Redont 2016]

If α > 3, then x(t) cv to a minimizer of F and:

F (x(t))− F (x∗) = o

(
1

t2

) [Su, Boyd, Candes 2016]

[Chambolle, Dossal 2015]

[May 2017]

If α < 3 then no proof of cv of x(t) but:

F (x(t))− F (x∗) = O
(

1

t
2α
3

) [Attouch, Chbani, Riahi 2019]

[Aujol, Dossal 2017]
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Nesterov, Proof of the convergence rate O
(

1
t2

)
under convexity

We define:

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖(α− 1)(x(t)− x∗) + tẋ(t)‖2

.

Using (ODE), a straightforward computation shows that:

E ′(t) = −(α− 1)t 〈∇F (x(t)), x(t)− x∗〉︸ ︷︷ ︸
>F (x(t))−F (x∗) by convexity

+2t(F (x(t))− F (x∗))

6 (3− α)t(F (x(t)− F (x∗)).

1 If α > 3, ∀t > t0, t2(F (x(t))− F (x∗)) 6 E(t0).

2 If α > 3,

∫ +∞

t=t0

(α− 3)t(F (x(t)− F (x∗))dt 6 E(t0).

If F is convex and if α > 3, the solution of (ODE) satisfies

F (x(t))− F (x∗) = O
(

1

t2

)
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Nesterov’s accelerated gradient method
State of the art results

Let F : RN → R be a differentiable convex function with X ∗ := arg min(F ) 6= ∅.

yk = xk +
k

k + α
(xk − xk−1)

xk+1 = yk − h∇F (yk)

, α > 0

If α > 3

F (xk)− F (x∗) = O
(

1

k2

)
[Attouch, Peypouquet 2016]

If α > 3, then (xk)k>1 cv and:

F (xk)− F (x∗) = o

(
1

k2

)
[Chambolle, Dossal 2015]

[Attouch, Peypouquet 2015]

If α 6 3

F (xk)− F (x∗) = O
(

1

k
2α
3

)
.

[Attouch, Chbani, Riahi 2018]

[Apidopoulos, Aujol, Dossal 2018]
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Convergence rate analysis in finite time
Sketch of proof

E(t) = t2(F (x(t))− F (x∗)) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2

, λ =
2α

3
.

Assume that F satisfies a quadratic growth condition and admits a unique
minimizer.

1 Prove some differential inequation:

∀t > t0, E ′(t) +
λ− 2

t
E(t) 6 ϕ(t)E(t).

2 Integrate it between any t1 6 t0 and t:

∀t > t1, E(t) 6 E(t1)
( t1

t

)λ−2

eφ(t1).

3 Choose t1 such that the previous is as tight as possible:

∀t > t1, F (x(t))− F ∗ 6 C1e
2
3 C2(α−3)

(
α

t
√
µ

) 2α
3

.
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Convergence rate analysis in finite time
Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

For any α > 3, we have:(
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
α
√
µ

(
1

ε

) 3
2α

↪→ Polynomial decay.

Choose now:

α = C log

(
1

ε

)
.

Then (
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
Ce

3
2C

√
µ

log

(
1

ε

)

↪→ Fast exponential decay !



28/32

Convergence rate analysis in finite time
Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

For any α > 3, we have:(
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
α
√
µ

(
1

ε

) 3
2α

↪→ Polynomial decay.

Choose now:

α = C log

(
1

ε

)
.

Then (
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
Ce

3
2C

√
µ

log

(
1

ε

)

↪→ Fast exponential decay !



29/32

Convergence rate analysis in finite time
FISTA for composite optimization with a quadratic growth condition

Theorem

Let ε > 0 and

α1,ε := 3 log

(
5
√
LM0

eε

)
where: M0 = F (x0)− F ∗. (2)

Let (xk)n∈RN be a sequence of iterates generated by the FISTA algorithm with
parameter α1,ε. Then for κ = µ

L small enough, an ε-solution is reached in at most:

nFISTA1,ε :=
8e2

3
√
κ
α1,ε =

8e2

√
κ

log

(
5
√
LM0

eε

)
(3)

iterations.

α1,ε does not depend on µ or any estimation of µ !

nFISTA1,ε depends on the real value of µ.

Fast exponential decay.
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Comparison with Forward-Backward

Forward-Backward algorithm to minimize F = f + h

• Initialization: x0 ∈ RN , ε > 0.

• Iterations (n ≥ 0): update xk as follows:

xk+1 = prox 1
L h

(xk −
1

L
∇f (xk)) (4)

until ‖g(xk)‖ = ‖xk+1 − xk‖ 6 ε.

Let ε > 0. For κ = µ
L small enough,

nFISTAε 6 nFBε

where:

nFBε =
1

| log(1− κ)|
log

(
2LM0

ε2

)
∼ 1

κ
log

(
2LM0

ε2

)
nFISTAε =

4e2

√
κ

log

(
5LM0

e2ε2

)
with α = 3 log

(
5
√
LM0

eε

)
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Comparison with Nesterov for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

• Initialization: x0 ∈ RN , x−1 = x0.

• Iterations (n ≥ 0): update xk and yk as follows: yk = xk +
1−
√
κ

1 +
√
κ

(xk − xn−1)

xk+1 = yk − 1
L∇F (yk)

(5)

until ‖g(xk)‖ ≤ ε.

Let ε > 0. If µ is known, for κ = µ
L small enough, NSC is faster than FISTA. But

if µ is not perfectly known and for µ̃ 6 µ

nNSCε =
1∣∣∣∣log(1−
√

µ̃
L )

∣∣∣∣ log

(
4LM0

ε2

)
>

1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
(6)

In practice, FISTA may outperform NSC even for smaller underestimations of µ.
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Conclusion/To sum up

The version of FISTA proposed by Chambolle Dossal (2015) and Su Boyd
Candès (2016) can reach an ε-solution with at most

O

(√
L

µ
log

(
1

ε

))
iterations.

when the friction coefficient α is chosen as:

α = 3 log

(
5

eε

√
L(F (x0)− F ∗)

)
.

No need to estimate the growth parameter µ and the convergence rate does
not suffer from an underestimation of µ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for

strongly convex functions. 2021. 〈hal-03491527〉
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