FISTA is an automatic geometrically optimized algorithm for strongly convex functions

Jean-François Aujol, Charles Dossal, Aude Rondepierre

Institut de Mathématiques de Toulouse, INSA de Toulouse \& LAAS-CNRS
Séminaire Français d'Optimisation - Jeudi 10 mars 2022

The setting: composite optimization

$$
\text { Minimize } F(x)=f(x)+h(x), \quad x \in \mathbb{R}^{n},
$$

where:

- f is a convex differentiable function with a L-Lipschitz gradient:

$$
\text { For all }(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N} \text {, we have: }
$$

$$
f(y) \leqslant \underbrace{f(x)+\langle\nabla f(x), y-x\rangle}_{\text {linear approximation }}+\underbrace{\frac{L}{2}\|y-x\|^{2}}_{=\Delta(x, y)}
$$

- h is a convex lower semicontinuous (Isc) simple function.
\hookrightarrow Application to least square problems, LASSO $\left(\min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|A x-b\|^{2}+\|x\|_{1}\right)$
\hookrightarrow Applications in Image and Signal processing, machine learning,...

The setting: local geometry of convex functions

In this talk we assume that the composite convex function $F=f+h$ satisfies a quadratic growth condition around its set of minimizers:

Quadratic growth condition

There exists $\mu>0$ such that:

$$
\forall x \in \mathbb{R}^{n}, F(x)-F\left(x^{*}\right) \geqslant \frac{\mu}{2} d\left(x, X^{*}\right)^{2}
$$

where $X^{*}=\arg \min F$ and $F^{*}=\min F$.

- Relaxation of strong convexity.
- Equivalent (in the convex setting) to a global version of the Łojasiewicz property with an exponent $\frac{1}{2}$.

Analyzing optimization algorithms in terms of ε-solution

Notion of ε-solution

Let $\varepsilon>0$. The minimizers of a composite function F are characterized by:

$$
0 \in \partial F(x)=\nabla f(x)+\partial h(x)
$$

or equivalently, for any $\gamma>0$,

$$
x=\operatorname{prox}_{\gamma h}(x-\gamma \nabla f(x))
$$

where: $\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{n}} \gamma h(y)+\frac{1}{2}\|y-x\|^{2}$.

Definition (ε-solution)

An iterate x_{k} is said to be an ε-solution of $\min _{x \in \mathbb{R}^{n}} F(x)$ if:

$$
\left\|g\left(x_{k}\right)\right\| \leqslant \varepsilon
$$

where: $g(x):=L\left(x-\operatorname{prox}_{\gamma h}\left(x-\frac{1}{L} \nabla f(x)\right)\right)$ is the composite gradient mapping.

Analyzing optimization algorithms in terms of ε-solution

 A tractable stopping criterionTwo useful properties
(1) $\forall x \in \mathbb{R}^{n}, \frac{1}{2 L}\|g(x)\|^{2} \leqslant F(x)-F^{*} \quad$ [Nesterov 2007]
x_{k} is an ε-solution of $\min _{x \in \mathbb{R}^{n}} F(x)$ if:

$$
F\left(x_{k}\right)-F^{*} \leqslant \frac{1}{2 L} \varepsilon^{2} .
$$

(2) $\forall x \in \mathbb{R}^{n}, F\left(x^{+}\right)-F^{*} \leqslant \frac{2}{\mu}\|g(x)\|^{2}$
[Aujol Dossal Labarrière R. 2021]
A tractable stopping criterion

$$
\left\|g\left(x_{k}\right)\right\| \leqslant \varepsilon
$$

Outline

(1) The Forward-Backward and FISTA algorithms

- The Forward-Backward algorithm
- FISTA a fast proximal gradient method
- FB vs FISTA in the strongly convex case
(2) FISTA is an automatic geometrically optimized algorithm
- The dynamical system intuition
- Convergence rates under some quadratic growth condition
- Comparisons

Forward-Backward algorithm

Definition

Minimize $F(x)=f(x)+h(x), \quad x \in \mathbb{R}^{n}$.
Optimality condition:

$$
0 \in \nabla f(x)+\partial h(x)
$$

or equivalently, for any $\gamma>0$,

$$
x=\operatorname{prox}_{\gamma h}(x-\gamma \nabla f(x))
$$

where: $\operatorname{prox}_{\gamma h}(x)=\arg \min _{y \in \mathbb{R}^{n}} \gamma h(y)+\frac{1}{2}\|y-x\|^{2}$.

Forward-Backward algorithm

$$
\begin{aligned}
& x_{0} \in \mathbb{R}^{n} \\
& x_{k+1}=\operatorname{prox}_{\gamma h}\left(x_{k}-\gamma \nabla f\left(x_{k}\right)\right), \quad \gamma>0
\end{aligned}
$$

Forward-Backward algorithm

Interpretation

Forward-Backward algorithm to minimize $F=f+h$ with $\gamma=\frac{1}{L}$

$$
\begin{aligned}
& x_{0} \in \mathbb{R}^{n} \\
& x_{k+1}=\operatorname{prox}_{\frac{1}{L} h}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right) .
\end{aligned}
$$

Instead of minimizing directly $F=f+g$, minimize at each iteration k its quadratic upper bound:

$$
x \mapsto f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{L}{2}\left\|x-x_{k}\right\|^{2}+h(x)
$$

Hence:

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x \in \mathbb{R}^{n}}\left(f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{L}{2}\left\|x-x_{k}\right\|^{2}+h(x)\right) \\
& =\arg \min _{x \in \mathbb{R}^{n}}\left(h(x)+\frac{L}{2}\left\|x-\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right)\right\|^{2}+f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right) \\
& =\operatorname{prox}_{\frac{1}{L} h}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right)
\end{aligned}
$$

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization):

$$
x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)
$$

since: $\operatorname{prox}_{h}(x)=\arg \min _{y \in \mathbb{R}^{n}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x$.

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization):

$$
x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)
$$

since: $\operatorname{prox}_{h}(x)=\arg \min _{y \in \mathbb{R}^{n}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x$.

- Gradient projection method ($h=i_{C}$, constrained convex optimization):

$$
x_{k+1}=P_{C}^{\perp}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right)
$$

since: $\operatorname{prox}_{h}(x)=\arg \min _{y \in \mathbb{R}^{n}}\left(i_{C}(y)+\frac{1}{2}\|y-x\|^{2}\right)=P_{C}^{\perp}(x)$.

Forward-Backward algorithm

Basic examples

- Gradient method ($h=0$, unconstrained optimization):

$$
x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)
$$

since: $\operatorname{prox}_{h}(x)=\arg \min _{y \in \mathbb{R}^{n}}\left(0+\frac{1}{2}\|y-x\|^{2}\right)=x$.

- Gradient projection method ($h=i_{C}$, constrained convex optimization):

$$
x_{k+1}=P_{C}^{\perp}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right)
$$

since: $\operatorname{prox}_{h}(x)=\arg \min _{y \in \mathbb{R}^{n}}\left(i_{C}(y)+\frac{1}{2}\|y-x\|^{2}\right)=P_{C}^{\perp}(x)$.

- Iterative Soft-Thresholding Algorithm (ISTA) $\left(h=\|\cdot\|_{1}\right)$:

$$
x_{k+1}=\operatorname{prox}_{\frac{1}{L} h}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right)
$$

with: $\operatorname{prox}_{\gamma h}(x)=\operatorname{sign}(x) \max (0,|x|-\gamma)$.

Forward-Backward algorithm

Convergence rate in the convex case

Assume that F is convex. Then:

$$
\forall k \geqslant 1, F\left(x_{k}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{k} .
$$

The number of iterations required by FB to reach an ε-solution in the sense that:

$$
\frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{k} \leqslant \frac{1}{2 L} \varepsilon^{2}
$$

is at most:

$$
\frac{4 L^{2}}{\varepsilon^{2}}\left\|x_{0}-x^{*}\right\|^{2}\left(=\mathcal{O}\left(\frac{L^{2}}{\varepsilon^{2}}\right)\right) .
$$

FISTA an accelerated proximal gradient method

FISTA - Beck Teboulle 2009

$$
\begin{aligned}
y_{k} & =x_{k}+\frac{t_{k}-1}{t_{k+1}}\left(x_{k}-x_{n-1}\right) \\
x_{k+1} & \left.=\operatorname{prox}_{\frac{1}{L} h}\left(y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)\right)\right) .
\end{aligned}
$$

where $t_{1}=1$ and the sequence $\left(t_{k}\right)_{k \in \mathbb{N}}$ is determined as the positive root of:

$$
t_{k+1}^{2}-t_{k+1}=t_{k}^{2} .
$$

For the class of convex functions, they prove:

$$
F\left(x_{k}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{(k+1)^{2}}
$$

but they do not prove the convergence of the iterates.

FISTA a fast proximal gradient method

FISTA - Chambolle Dossal 2015, Su Boyd Candès 2016

Let $\alpha \geqslant 3$.

$$
\begin{aligned}
y_{k} & =x_{k}+\frac{n}{n+\alpha}\left(x_{k}-x_{n-1}\right) \\
x_{k+1} & \left.=\operatorname{prox}_{\frac{1}{L} h}\left(y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)\right)\right) .
\end{aligned}
$$

- Initially Nesterov (1984) proposes $\alpha=3$.
- For the class of composite convex functions:

$$
\forall k \geqslant 1, F\left(x_{k}\right)-F^{*} \leqslant \frac{2 L\left\|x_{0}-x^{*}\right\|^{2}}{(k+1)^{2}}
$$

and Chambolle Dossal prove the weak convergence of the iterates.

The number of iterations required for FISTA to reach an ε-solution is in $\mathcal{O}\left(\frac{L}{\varepsilon}\right)$ which better than FB!

FB vs FISTA in the strongly convex case

Exponential rate vs Polynomial rate $(1 / 3)$
Assume now that F additionally satisfies some quadratic growth condition:

$$
\forall x \in \mathbb{R}^{n}, F(x)-F^{*} \geqslant \frac{\mu}{2} d\left(x, X^{*}\right)^{2}
$$

Convergence rate for FB [Garrigos, Rosasco, Villa 2017]

$$
\forall k \in \mathbb{N}, F\left(x_{k}\right)-F^{*} \leqslant(1-\kappa)^{k}\left(F\left(x_{0}\right)-F^{*}\right)
$$

The number of iterations required to reach an ε-solution is:

$$
n_{\varepsilon}^{F B}=\frac{1}{|\log (1-\kappa)|} \log \left(\frac{2 L}{\varepsilon^{2}}\left(F\left(x_{0}\right)-F^{*}\right)\right) .
$$

Convergence rate for FISTA [Su Boyd Candès 2015], [Attouch Cabot 2017].
Assume additionally that F has a unique minimizer.

$$
\forall \alpha>0, \forall k \in \mathbb{N}, F\left(x_{k}\right)-F^{*}=\mathcal{O}\left(k^{-\frac{2 \alpha}{3}}\right)
$$

FB vs FISTA in the strongly convex case

Exponential rate vs Polynomial rate $(2 / 3)$

$$
F(x)=\frac{1}{2}\left\|M x-M x^{\circ}\right\|^{2}+\lambda\|T x\|_{1}
$$

where M is a random masking operator and T an orthogonal wavelet transform.

target x°

masked image $M x^{\circ}$

solution x^{*}

FB vs FISTA in the strongly convex case

Exponential rate vs Polynomial rate (3/3)

$\log \left(\left\|g\left(x_{k}\right)\right\|\right)$ along the iterations k
FB, FISTA-restart, FISTA with $\alpha=3$, FISTA with $\alpha=12$, FISTA with $\alpha=30$.
Motivation to provide a non-asymptotic analysis of FISTA and to compare rates in finite time!

Nesterov accelerated algorithm for strongly convex functions Differentiable case

Nesterov accelerated algorithm for strongly convex functions

$$
\begin{aligned}
& y_{k}=x_{k}+\frac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}\left(x_{k}-x_{n-1}\right) \\
& x_{k+1}=y_{k}-\frac{1}{L} \nabla F\left(y_{k}\right)
\end{aligned}
$$

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is μ-strongly convex for some $\mu>0$. Let $\varepsilon>0$. Then for $\kappa=\frac{\mu}{L}$ small enough,

$$
\forall n \in \mathbb{N}, F\left(x_{k}\right)-F\left(x^{*}\right) \leqslant 2(1-\sqrt{\kappa})^{n}\left(F\left(x_{0}\right)-F\left(x^{*}\right)\right),
$$

which means that an ε-solution can be obtained in at most:

$$
\begin{equation*}
n_{\varepsilon}^{N S C}=\frac{1}{|\log (1-\sqrt{\kappa})|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) . \tag{1}
\end{equation*}
$$

The iterations require an estimation of $\kappa=\frac{\mu}{L}$!

FISTA in the strongly convex case

Differentiable case

FB, FISTA with $\alpha=8$, FISTA with $\alpha=30$,
NSC with the true value of μ, NSC with $\widetilde{\mu}=\frac{\mu}{10}$.

FISTA in the strongly convex case

Differentiable case

$\log \left(\left\|g\left(x_{k}\right)\right\|\right)$ along the iterations
FB, FISTA with $\alpha=8$, FISTA with $\alpha=30$,
NSC with the true value of μ, NSC with $\widetilde{\mu}=\frac{\mu}{10}$.
FISTA is efficient without knowing μ and its convergence rate does not suffer from any underestimation of μ

Outline

(1) The Forward-Backward and FISTA algorithms

- The Forward-Backward algorithm
- FISTA a fast proximal gradient method
- FB vs FISTA in the strongly convex case
(2) FISTA is an automatic geometrically optimized algorithm
- The dynamical system intuition
- Convergence rates under some quadratic growth condition
- Comparisons

What we want to do now

FISTA: Nesterov accelerated algorithm for convex functions

- Initialization: $x_{0} \in \mathbb{R}^{N}, x_{-1}=x_{0}, \varepsilon>0, \alpha \geq 3$.
- Iterations ($n \geq 0$): update x_{k} and y_{k} as follows:

$$
\left\{\begin{array}{l}
y_{k}=x_{k}+\frac{n}{n+\alpha}\left(x_{k}-x_{n-1}\right) \\
x_{k+1}=\operatorname{prox}_{\frac{1}{L} h}\left(y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)\right)
\end{array}\right.
$$

until $\left\|g\left(x_{k}\right)\right\| \leq \varepsilon$ i.e. until an ε-solution is reached.
Convergence rate analysis for a given $\varepsilon>0$.

- How to get bounds in finite time on $F\left(x_{k}\right)-F^{*}$?
- Interpretation in terms of ε-solution:
- Since:

$$
\forall x \in \mathbb{R}^{n}, \frac{1}{2 L}\|g(x)\|^{2} \leqslant F(x)-F^{*}
$$

x_{k} is an epsilon solution if $F\left(x_{k}\right)-F^{*} \leqslant \frac{1}{2 L} \varepsilon^{2}$.

The dynamical system intuition

Link with the ODEs - A guideline to study optimization algorithms

General methodology to analyze optimization algorithms

- Interpreting the optimization algorithm as a discretization of a given ODE:

Gradient descent iteration: $\quad \frac{x_{k+1}-x_{k}}{h}+\nabla F\left(x_{k}\right)=0$
Associated ODE: $\quad \dot{x}(t)+\nabla F(x(t))=0$.

- Analysis of ODEs using a Lyapunov approach:

$$
\begin{gathered}
\mathcal{E}(t)=F(x(t))-F^{*} \\
\mathcal{E}(t)=t\left(F(x(t))-F^{*}\right)+\frac{1}{2}\left\|x(t)-x^{*}\right\|^{2} .
\end{gathered}
$$

- Building a sequence of discrete Lyapunov energies adapted to the optimization scheme to get the same decay rates

Illustration for the gradient descent method

A Lyapunov analysis of the ODE $\dot{x}(t)+\nabla F(x(t))=0$

$$
\mathcal{E}(t)=F(x(t))-F^{*} .
$$

(1) \mathcal{E} is a Lyapunov energy (i.e. non increasing along the trajectories $x(t)$):

$$
\mathcal{E}^{\prime}(t)=\langle\nabla F(x(t)), \dot{x}(t)\rangle=-\|\nabla F(x(t))\|^{2} \leqslant 0
$$

hence:

$$
\forall t \geqslant t_{0}, F(x(t))-F^{*} \leqslant F\left(x_{0}\right)-F^{*}
$$

Illustration for the gradient descent method

A Lyapunov analysis of the ODE $\dot{x}(t)+\nabla F(x(t))=0$

$$
\mathcal{E}(t)=F(x(t))-F^{*} .
$$

(1) \mathcal{E} is a Lyapunov energy (i.e. non increasing along the trajectories $x(t)$):

$$
\mathcal{E}^{\prime}(t)=\langle\nabla F(x(t)), \dot{x}(t)\rangle=-\|\nabla F(x(t))\|^{2} \leqslant 0
$$

hence:

$$
\forall t \geqslant t_{0}, F(x(t))-F^{*} \leqslant F\left(x_{0}\right)-F^{*}
$$

(2) Assume now that F is additionally μ-strongly convex. Then:

$$
\forall y \in \mathbb{R}^{N},\|\nabla F(y)\|^{2} \geqslant 2 \mu\left(F(y)-F^{*}\right)
$$

hence:

$$
\mathcal{E}^{\prime}(t)=-\|\nabla F(x(t))\|^{2} \leqslant-2 \mu\left(F(x(t))-F^{*}\right) \leqslant-2 \mu \mathcal{E}(t)
$$

and we deduce:

$$
\forall t \geqslant t_{0}, F(x(t))-F^{*} \leqslant\left(F\left(x_{0}\right)-F^{*}\right) e^{-2 \mu\left(t-t_{0}\right)} .
$$

Gradient descent for strongly convex functions

From the continuous to the discrete

$$
\mathcal{E}_{k}=F\left(x_{k}\right)-F^{*} \quad \text { with: } \quad x_{k+1}=x_{k}-h \nabla F\left(x_{k}\right)
$$

$$
\begin{aligned}
\mathcal{E}_{k+1}-\mathcal{E}_{k} & =F\left(x_{k+1}\right)-F\left(x_{k}\right) \leqslant\left\langle\nabla F\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \leqslant-h\left(1-\frac{L}{2} h\right)\left\|\nabla F\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

- If $h<\frac{2}{L}$ then the GD is a descent algorithm: $\forall k, F\left(x_{k+1}\right)<F\left(x_{k}\right)$.

Gradient descent for strongly convex functions

From the continuous to the discrete

$$
\mathcal{E}_{k}=F\left(x_{k}\right)-F^{*} \quad \text { with: } \quad x_{k+1}=x_{k}-h \nabla F\left(x_{k}\right)
$$

$$
\begin{aligned}
\mathcal{E}_{k+1}-\mathcal{E}_{k} & =F\left(x_{k+1}\right)-F\left(x_{k}\right) \leqslant\left\langle\nabla F\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \leqslant-h\left(1-\frac{L}{2} h\right)\left\|\nabla F\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

- If $h<\frac{2}{L}$ then the GD is a descent algorithm: $\forall k, F\left(x_{k+1}\right)<F\left(x_{k}\right)$.
- Assume that F is additionally μ-strongly convex:

$$
\forall k,\left\|\nabla F\left(x_{k}\right)\right\|^{2} \geqslant 2 \mu\left(F\left(x_{k}\right)-F^{*}\right)=2 \mu \mathcal{E}_{k}
$$

hence:

$$
\mathcal{E}_{k+1}-\mathcal{E}_{k} \leqslant-2 \mu h\left(1-\frac{L}{2} h\right) \mathcal{E}_{k}
$$

For example si $h=\frac{1}{L}$ we get:

$$
\forall k, \mathcal{E}_{k+1}-\mathcal{E}_{k} \leqslant-\frac{\mu}{L} \mathcal{E}_{k} \Rightarrow \mathcal{E}_{k} \leqslant\left(1-\frac{\mu}{L}\right)^{k} \mathcal{E}_{0}
$$

The Nesterov's accelerated gradient method

 Link with the ODEs
Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

$$
x_{k+1}=y_{k}-h \nabla F\left(y_{k}\right) \text { with } y_{k}=x_{n}+\frac{n}{n+\alpha}\left(x_{n}-x_{n-1}\right)
$$

can be seen as a semi-implicit discretization of a solution of

$$
\begin{equation*}
\ddot{x}(t)+\frac{\alpha}{t} \dot{x}(t)+\nabla F(x(t))=0 \tag{ODE}
\end{equation*}
$$

With $\dot{x}\left(t_{0}\right)=0$. Move of a solid in a potential field with a vanishing viscosity $\frac{\alpha}{t}$.

Advantages of the continuous setting

(1) A simpler Lyapunov analysis, better insight
(2) Optimality of bounds

Convergence analysis of the Nesterov gradient method

 Convergence rates in the continuous settingLet $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a differentiable convex function and $x^{*} \in \arg \min (F) \neq \emptyset$.

- If $\alpha \geqslant 3$,

$$
F(x(t))-F\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{t^{2}}\right) \quad \begin{aligned}
& \text { [Attouch, Chbani, } \\
& \text { Peypouquet, Redont 2016] }
\end{aligned}
$$

- If $\alpha>3$, then $x(t) \mathrm{cv}$ to a minimizer of F and:

$$
F(x(t))-F\left(x^{*}\right)=o\left(\frac{1}{t^{2}}\right)
$$

[Su, Boyd, Candes 2016]
[Chambolle, Dossal 2015]
[May 2017]

- If $\alpha<3$ then no proof of cv of $x(t)$ but:

$$
F(x(t))-F\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{t^{\frac{2 \alpha}{3}}}\right) \quad \begin{aligned}
& \text { [Attouch, Chbani, Riahi 2019] } \\
& {[\text { Aujol, Dossal 2017] }}
\end{aligned}
$$

Nesterov, Proof of the convergence rate $\mathcal{O}\left(\frac{1}{t^{2}}\right)$ under convexity

We define:

$$
\mathcal{E}(t)=t^{2}\left(F(x(t))-F\left(x^{*}\right)\right)+\frac{1}{2}\left\|(\alpha-1)\left(x(t)-x^{*}\right)+t \dot{x}(t)\right\|^{2} .
$$

Using (ODE), a straightforward computation shows that:

$$
\begin{aligned}
\mathcal{E}^{\prime}(t) & =-(\alpha-1) t \underbrace{\left\langle\nabla F(x(t)), x(t)-x^{*}\right\rangle}_{\geqslant F(x(t))-F\left(x^{*}\right) \text { by convexity }}+2 t\left(F(x(t))-F\left(x^{*}\right)\right) \\
& \leqslant(3-\alpha) t\left(F\left(x(t)-F\left(x^{*}\right)\right)\right.
\end{aligned}
$$

(1) If $\alpha \geqslant 3, \forall t \geqslant t_{0}, t^{2}\left(F(x(t))-F\left(x^{*}\right)\right) \leqslant \mathcal{E}\left(t_{0}\right)$.
(2) If $\alpha>3, \int_{t=t_{0}}^{+\infty}(\alpha-3) t\left(F\left(x(t)-F\left(x^{*}\right)\right) d t \leqslant \mathcal{E}\left(t_{0}\right)\right.$.

If F is convex and if $\alpha \geqslant 3$, the solution of (ODE) satisfies

$$
F(x(t))-F\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{t^{2}}\right)
$$

Nesterov's accelerated gradient method

State of the art results

Let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a differentiable convex function with $X^{*}:=\arg \min (F) \neq \emptyset$.

$$
\begin{aligned}
y_{k} & =x_{k}+\frac{k}{k+\alpha}\left(x_{k}-x_{k-1}\right), \quad \alpha>0 \\
x_{k+1} & =y_{k}-h \nabla F\left(y_{k}\right)
\end{aligned}
$$

- If $\alpha \geqslant 3$

$$
F\left(x_{k}\right)-F\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{k^{2}}\right) \quad \text { [Attouch, Peypouquet 2016] }
$$

- If $\alpha>3$, then $\left(x_{k}\right)_{k \geqslant 1} \mathrm{cv}$ and:

$$
F\left(x_{k}\right)-F\left(x^{*}\right)=o\left(\frac{1}{k^{2}}\right)
$$

[Chambolle, Dossal 2015]
[Attouch, Peypouquet 2015]

- If $\alpha \leqslant 3$

$$
F\left(x_{k}\right)-F\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{k^{\frac{2 \alpha}{3}}}\right) . \quad \begin{array}{ll}
\text { [Attouch, Chbani, Riahi 2018] }
\end{array}
$$

Convergence rate analysis in finite time

Sketch of proof

$$
\mathcal{E}(t)=t^{2}\left(F(x(t))-F\left(x^{*}\right)\right)+\frac{1}{2}\left\|\lambda\left(x(t)-x^{*}\right)+t \dot{x}(t)\right\|^{2}, \quad \lambda=\frac{2 \alpha}{3} .
$$

Assume that F satisfies a quadratic growth condition and admits a unique minimizer.
(1) Prove some differential inequation:

$$
\forall t \geqslant t_{0}, \mathcal{E}^{\prime}(t)+\frac{\lambda-2}{t} \mathcal{E}(t) \leqslant \varphi(t) \mathcal{E}(t) .
$$

(2) Integrate it between any $t_{1} \leqslant t_{0}$ and t :

$$
\forall t \geqslant t_{1}, \mathcal{E}(t) \leqslant \mathcal{E}\left(t_{1}\right)\left(\frac{t_{1}}{t}\right)^{\lambda-2} e^{\phi\left(t_{1}\right)}
$$

(3) Choose t_{1} such that the previous is as tight as possible:

$$
\forall t \geqslant t_{1}, F(x(t))-F^{*} \leqslant C_{1} e^{\frac{2}{3} C_{2}(\alpha-3)}\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}}
$$

Convergence rate analysis in finite time

Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

- For any $\alpha>3$, we have:

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2 \alpha}}
$$

\hookrightarrow Polynomial decay.

Convergence rate analysis in finite time

Optimize α to get a fast exponential decay

Let ε be a given accuracy. Let us make some rough calculations:

- For any $\alpha>3$, we have:

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{\alpha}{\sqrt{\mu}}\left(\frac{1}{\varepsilon}\right)^{\frac{3}{2 \alpha}}
$$

\hookrightarrow Polynomial decay.

- Choose now:

$$
\alpha=C \log \left(\frac{1}{\varepsilon}\right) .
$$

Then

$$
\left(\frac{\alpha}{t \sqrt{\mu}}\right)^{\frac{2 \alpha}{3}} \leqslant \varepsilon \Longleftrightarrow t \geqslant \frac{C e^{\frac{3}{2 c}}}{\sqrt{\mu}} \log \left(\frac{1}{\varepsilon}\right)
$$

\hookrightarrow Fast exponential decay!

Convergence rate analysis in finite time

FISTA for composite optimization with a quadratic growth condition

Theorem

Let $\varepsilon>0$ and

$$
\begin{equation*}
\alpha_{1, \varepsilon}:=3 \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right) \quad \text { where: } \quad M_{0}=F\left(x_{0}\right)-F^{*} \tag{2}
\end{equation*}
$$

Let $\left(x_{k}\right)_{n \in \mathbb{R}^{N}}$ be a sequence of iterates generated by the FISTA algorithm with parameter $\alpha_{1, \varepsilon}$. Then for $\kappa=\frac{\mu}{L}$ small enough, an ε-solution is reached in at most:

$$
\begin{equation*}
n_{1, \varepsilon}^{\text {FISTA }}:=\frac{8 e^{2}}{3 \sqrt{\kappa}} \alpha_{1, \varepsilon}=\frac{8 e^{2}}{\sqrt{\kappa}} \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right) \tag{3}
\end{equation*}
$$

iterations.

- $\alpha_{1, \varepsilon}$ does not depend on μ or any estimation of μ !
- $n_{1, \varepsilon}^{\text {FISTA }}$ depends on the real value of μ.
- Fast exponential decay.

Comparison with Forward-Backward

Forward-Backward algorithm to minimize $F=f+h$

- Initialization: $x_{0} \in \mathbb{R}^{N}, \varepsilon>0$.
- Iterations ($n \geq 0$): update x_{k} as follows:

$$
\begin{equation*}
x_{k+1}=\operatorname{prox}_{\frac{1}{L} h}\left(x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\right) \tag{4}
\end{equation*}
$$

$$
\text { until }\left\|g\left(x_{k}\right)\right\|=\left\|x_{k+1}-x_{k}\right\| \leqslant \varepsilon
$$

Let $\varepsilon>0$. For $\kappa=\frac{\mu}{L}$ small enough,

$$
n_{\varepsilon}^{F I S T A} \leqslant n_{\varepsilon}^{F B}
$$

where:

$$
\begin{aligned}
n_{\varepsilon}^{F B} & =\frac{1}{|\log (1-\kappa)|} \log \left(\frac{2 L M_{0}}{\varepsilon^{2}}\right) \sim \frac{1}{\kappa} \log \left(\frac{2 L M_{0}}{\varepsilon^{2}}\right) \\
n_{\varepsilon}^{F I S T A} & =\frac{4 e^{2}}{\sqrt{\kappa}} \log \left(\frac{5 L M_{0}}{e^{2} \varepsilon^{2}}\right) \quad \text { with } \quad \alpha=3 \log \left(\frac{5 \sqrt{L M_{0}}}{e \varepsilon}\right)
\end{aligned}
$$

Comparison with Nesterov for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

- Initialization: $x_{0} \in \mathbb{R}^{N}, x_{-1}=x_{0}$.
- Iterations ($n \geq 0$): update x_{k} and y_{k} as follows:

$$
\left\{\begin{array}{l}
y_{k}=x_{k}+\frac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}\left(x_{k}-x_{n-1}\right) \tag{5}\\
x_{k+1}=y_{k}-\frac{1}{L} \nabla F\left(y_{k}\right)
\end{array}\right.
$$

until $\left\|g\left(x_{k}\right)\right\| \leq \varepsilon$.
Let $\varepsilon>0$. If μ is known, for $\kappa=\frac{\mu}{L}$ small enough, NSC is faster than FISTA. But if μ is not perfectly known and for $\tilde{\mu} \leqslant \mu$

$$
\begin{equation*}
n_{\varepsilon}^{N S C}=\frac{1}{\left|\log \left(1-\sqrt{\frac{\tilde{\mu}}{L}}\right)\right|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) \geqslant \frac{1}{|\log (1-\sqrt{\kappa})|} \log \left(\frac{4 L M_{0}}{\varepsilon^{2}}\right) \tag{6}
\end{equation*}
$$

In practice, FISTA may outperform NSC even for smaller underestimations of μ.

Conclusion/To sum up

- The version of FISTA proposed by Chambolle Dossal (2015) and Su Boyd Candès (2016) can reach an ε-solution with at most

$$
\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right) \text { iterations. }
$$

when the friction coefficient α is chosen as:

$$
\alpha=3 \log \left(\frac{5}{e \varepsilon} \sqrt{L\left(F\left(x_{0}\right)-F^{*}\right)}\right) .
$$

- No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.

J-F Aujol, Ch. Dossal, A.R. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. 2021. 〈hal-03491527〉

